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GENERALIZED SMALL CANCELLATION
THEORY AND APPLICATIONS
I. THE WORD PROBLEM

BY
E. RIPS

ABSTRACT

In this paper we develop a generalization of the small cancellation theory. The
usual small cancellation hypotheses are replaced by some condition that,
roughly speaking, says that if a common part of two relations is a big piece of
one relation then it must be a very small piece of another. In particular, we show
that-a finitely presented generalized small cancellation group has a solvable
word problem. The machinery developed in the paper is to be used in the
following papers of this series for constructing some group-theoretic examples.

Introduction

Various problems in group theory are related to construction of groups by
generators and relations. Although most algorithmic problems concerning
presentations of groups (in particular, even the problem of being trivial) have, in
general, a negative solution, it has been discovered that, in certain cases,
important information about a group can be derived from the combinatorial
properties of its presentation by generators and defining relations.

Max Dehn solved the word and conjugacy problems for the fundamental
groups of compact Riemann surfaces of genus > 1. These groups are defined by a
single relator r with the property that, if s is a cyclic permutation of r or r~*, with
s#r7’, there is very little cancellation when the product rs is formed. Dehn’s
results were later generalized by several authors to a wider class of groups,
possessing presentations in which the defining relations have a similar small
cancellation property (for more details and bibliography, see [1]).

An essential feature of small-cancellation groups is that, if a freely reduced
non-trivial word w is equal to 1, then w contains a large part of some cyclic
permutation of a defining relation (or its inverse). This yields a criterion for
w # 1, which is used to prove some embedding theorems by small cancellation
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methods (see [1], p. 282). Moreover, this criterion suggests that small cancella-
tion may prove helpful in showing that a given group is non-trivial or even
infinite. However, in trying to apply the small cancellation theory to certain
group theoretic problems we meet difficulties, indicating that an essential
generalization of the small cancellation hypotheses is needed. This is evident
from the following example.

In order to construct a non-trivial finitely generated divisible group, it is
natural to proceed as follows:

Let F be a finitely generated free group. Since the set F X N is countable, we
write its elements in a sequence

(81, n1)7 (gZ’ nZ)’ T (gk’ LY )’ et

Choose hy, by« -+, hi,+ -+ elements of F and let R be the set of elements
{h ;'kg;‘l k=1,2,---}. For N =(R)", F/N is a finitely generated divisible group.
The problem now reduces to verifying that, for a suitable choice of elements h,
F/N is non-trivial. One is tempted to try to choose the elements ki so that (after
symmetrizing) the set ® = {h,'g . I k =1,2,-- -} satisfies suitable small cancella-
tion conditions. Unfortunately, this seems to be impossible. Indeed, if kg «isa
cyclically reduced word, then the symmetrizing process adds hi* g h to the
relations and then h;*~ is a common initial segment of these two relations. If
h:*g;1 is reducible, a similar argument applies after this word has been reduced.
Even worse, g ranges over all elements of F, and so, for any fixed h:"g ;l, some
later h;"g,_1 will contain it as a segment.

Inevitably, we need either a different approach or a modification of the small
cancellation hypotheses, in such a way that in certain cases relations having large
common segments are admitted.

This is the objective of the first paper of this series, in which we introduce the
following extension of the small cancellation hypotheses:

(1) We consider ® = U, &, as a union of disjoint sets where, roughly
speaking, the length of the words in R, increases with n.

(2) We replace the notion of a piece (a common subword of two relations) by
a new and more complicated notion which relates subwords of relations.
Graphically, the comparison between the old and the new notion is presented in
Fig. 1 where words are denoted by lines. Here A is a subword of R € &, Bisa
subword of some relator § € R, or, possibly, of a power $™ of § (m > 1), Z, and
Z, are words of a special type (they belong to the class of words ¥, described in
§1, where h =min(k, j)—1), A~'Z,BZ;" belongs to the normal subgroup of F
generated by &, U R, U--- U R,. We call A a (generalized) j-piece of R.



Vol. 41, 1982 SMALL CANCELLATION THEORY 3

A e iv uLmL‘ N
Q ‘Zﬁ/

Rzu,Auz Sz Y

R=U AU, $= AV

old notion new notion

Fig. 1.

(3) The condition that the generalized pieces be small, which is stated here in
a metric form, can be formulated as follows:
S(A, 0). Let A and @ be two constants satisfying the inequalities

1 61 +13A°
< <122 " 2
0<aA =517 0<é6=1-——"73y

For a (generalized) j-piece A of a relator R € &, we require that, if j >k,
then |A|<A*7*'|R]|, and, if j >k, then | A| < 8| R/, where | W| denotes the
length of the word W.

As a matter of fact, in the paper we shall use the following, closely related,
non-metric condition.

(S) Let R € R be decomposed as a product of generalized pieces of various
types:

R EAlAz"'Ap.

Forj=1,2,---, let d; be the number of (generalized) j-pieces A; appearing in
this factorization. Then the numbers d,,d,,--- are subject to the following
limitations:

(o) We cannot have

d,=813"", d,=813*7 -, d =8, d=0 forj>k
(B) We cannot have, for some h >k,
dis713*", d,=7137 . di1S713,
d. =6, d,=1 and d,=0 forj>k j#h
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It can be shown that S(A, 6) implies (S). Indeed, if S(A, 6) holds, then
p k
RI= S 1A 1< (3 dr"+0- 3 d)IR].
e= j= >k
If d, =8-13*7 for j =k and d; =0 for j >k then, for A =1/21,

|R|<(2813*-w-'+l)|R|< IR|=|R|

1-13A
which is a contradiction.

Now suppose that for some h >k, we have d; <7-13*7 for j <k, di =6,
dy=1and d, =0 for j >k, j#h; then

k-1
|IR|< (2 7135 KT 4 6A +0)|R|<(%%3+0)|R|§IRI
j=1
which is also impossible. Thus, (S) holds.

Our main results can be stated in the metric form as follows (cf. Theorem 1,
where the results are stated in the non-metric form):

Let ® be a symmetrized subset of F,R = U,z &, satisfying condition
S(A, 8). Let N =(®R)". Then:

(1) Every (freely reduced) non-trivial word W in N contains a subword A
which is related to a word B such that either B is a “large” subword of some
relator R in R (i.e. {B|>(1—(@4A +131%)/(1-13A))|R|) or even B=R"™R’
with m =1, R = R'R" in the following sense (see Fig. 2):

There are words Z,, Z, of a special type (belonging to the class of words W,
described in §1 and satisfying condition (L)) such that A ' Z;"BZ, belongs to the
normal subgroup of F generated by &, U+ - U Ri-y.

(2) Every (freely reduced) non-trivial word W in N contains a subword C
which is also a subword of some relator S E€®R. such that |C|>
(1- 0 —(4A +131%)/(1-13)1))| S| (see Fig. 3).

(3) If R is finite then the quotient group F/N has a solvable group problem.

R
z, § * Z,
" A W, w, c Wy
Wz, AW, Wz cw, SECV

Fig. 2. Fig. 3.
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If R satisfies some (relatively mild) additional conditions, then one can deduce
from part (1) the existence of an analog of Dehn’s Algorithm in F/N (see
Theorem 2).

Statement (2) implies the infinity of F/N in most cases. It is fundamental for
the applications, which will be presented in the subsequent papers of this series.

Following the geometric approach of R. C. Lyndon, we consider van Kampen
diagrams. We introduce a rank function on regions as follows: rank(®)=i
whenever the relator R written on the boundary of the region ® belongs to &,.
This makes it possible to translate our statements into statements about maps in
the plane with a given rank of regions, subject to certain conditions of a
combinatorial geometric nature.

§1. Statement of the main results; comments

1.1. Let F be a free group on a set X of generators. A letter is an element of
the set Y of generators and inverses of generators. A word W is a finite string of
letters, W =y, - - - y,. We denote the identity of F by 1. Each element of F has a
unique presentation as a reduced word W =y, - - - y, in which no two successive
letters y;y;+: form an inverse pair x.x;" or x;'x;. The integer n is the length of W,
which we denote by | W|. A reduced word W is said to be cyclically reduced if y,
is not the inverse of y,. We use “ ="’ to denote graphical identity of words. The
notation U = V (mod N) means that the words U and V are equal modulo the
normal subgroup N.

A subset R of F is said to be symmetrized if all elements of R are cyclically
reduced and, for each R in %, all cyclically reduced conjugates of both R and
R™ also belong to .

1.2. Let ()= be a family of disjoint symmetrized subsets of F. We shall
consider combinatorial conditions on this family which generalizes the small
cancellation hypotheses.

These conditions depend on an auxiliary family of sets (¥ )izo.

Let N, i =1,2, -, be the normal subgroup of F generated by ®,U---U R,,
let No=E, the trivial subgroup, and let N be the normal subgroup of F
generated by & = U, R.

We are going to generalize the notion of a piece of a relator. Our starting point
is the following definition of a piece in the ordinary small cancellation theory.

A subword A of a relator R = U,AU, is said to be a piece if there is a relator
S, with a factorization S = AV, such that S~ AU, U, is not freely equal to 1 or to
a conjugate of a relator (see [1], p. 240 and p. 271).
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DerFINiTION 1. Given an integer j = 1, a word A is said to be a (generalized)
j-piece of a relator R € R, (relative to (R:)iz1 and (W:)iz0) if R = U,AU, and
there exist a relator S € &; and two words Z,, Z, € W, where h = min(k, j)—1,
such that (see Fig. 1):

(1) For some m =1, there is a factorization $™ = BV.

(2) A =2Z,BZ;' (mod N,,).

3) If k=j then (a) Z:S7'ZT'AU U, € Ni; (B) Z,S7'Z'AULU, is not
conjugate modulo N, to a relator T € ..

Let #(R;j) denote the set of all j-pieces of a relator R.

We shall use factorizations of subwords of relators into products of general-
ized pieces of various types. In this connection we introduce the following
notation.

Let ¢ =(cy, ¢, * * * ) be a sequence of numbers. For a relator R, $#(R;c) will
denote the set of all subwords D of R" i.e. R" =P, DP,, which have a
factorization D = D, D, - - - D, such that each D; is an f(l)-pieceof R, 1=1=k,
and

card{llf(l)=j}§c,— Gzl

(i.e., the number of j-pieces in this factorization does not exceed ¢;). #(R;c)
will denote the set of all subwords Q of R" such that every subword of Q
belongs to #(R;c) (n=1).

1.3. Introducing sequences ¢ = (0,0,---,0,1,0,---), where 1 is in the j-th
place, we can write ¢ = 2z e;.

Our generalized small cancellation hypotheses consist of two conditions (S)
and (L), which we now state.

Condition (S). Foranyi=1and RE R,
() RZ $(R;Zi-, 813 ¢);
(B) for any k >i, R& $(R; Zj=17-13' ¢; + 6e: + e ).

ReMARk. This condition means that, if R has a factorization R =
D,D;- - - D, into a product of generalized pieces D;, 1 =1 = h, then (a) asserts
that it cannot happen that none of the D,’s is a j-piece for j > i and that, at the
same time, there are at most 8-13' j-pieces for j=1,2,--+,i; or, stated
positively, either some D; is a j-piece with j > i, or for some j, 1 = j =i, there are
more than 8-13' j-pieces in the factorization. Similarly, (B) asserts that it cannot
happen that only one D, is a k-piece with k > i, all other factors are j-pieces
with j = i, the number of i-pieces does not exceed 6, and, for j < i, the number of
j-pieces does not exceed 7-13'.
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Roughly speaking, condition (S) states that, for any relator R € &, the
j-pieces of R with j =i are “relatively small”’ subwords, while the j-pieces of R
with j > i are “strictly less” than R (and cannot be completed to R even by
adding “relatively many” generalized pieces of types = i).

Condition (L). (a) 1€ W, for all i =0;
B) if U, U.€ W;-, and V € #(R;2;=12-13'¢; + &) for some R € R;, then
u,vu,ew,i=12,---.

ReMARK. Notice that, according to Definition 1, the larger the sets %, the
more possibilities we have for generalized pieces, hence the larger are the sets
P(R;j), $(R;c), K(R;c) and the more restrictive is condition (S).

1.4. Our main result is the following

TueoREM 1. Let (R;)i=: be a family of disjoint symmetrized subsets of the free
group F and let (W:)izo be a family of subsets of F. Let N(N;) denote the normal
subgroup of F generated by ® = U,z R; (respectively, by R, U--- U R)).

If the families of sets (R;)iz1 and (W )izo satisfy conditions (S) and (L) then:

(i) Every freely reduced non-trivial word W in N contains a subword A (i.e.
W = W,AW,) for which there exist a word B, an integer i, two words Z,,Z, €
Wi-1 and a relator R € R; such that

A'Z'BZ,€N,_,

and either there exists a factorization R = BU with
i—1
Uue %’(R; Y, 5-13' ¢, +4ei)
j=1

or B=R"R’, with m=1 and R = R'R" (see Fig. 2).

(i) Every freely reduced non-trivial word W in N contains a subword C (i.e.
W = Wi{CW?}) for which there exist an integer k and a relator S € R with a
factorization S = CV such that either

k
VEX (s; Y, 4-13""e,-)
j=1
or, for some h >k,

k—1

VeEX (S; 2 3-13%7e; +2ex + e,.) (see Fig. 3).

=

(iii) If Uiz1 @R is finite then G = F/N has a solvable word problem.
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By imposing the metric condition S(A, ), we obtain information about the
relative lengths of B and C:

COoROLLARY 1. If (Ri)izi and (W:)izo satisfy S(A,0) and (L) then in the
notation of part (i) of Theorem 1 we also have

2
|B|>(1—M)1R|

1-13A

and in the notation of part (ii) of Theorem 1 we have

2
|C|>(1—0~M)|Sl.

1-13A

PROOF. As shown in the introduction, condition S(A, 8) implies condition (S).
By part (i) of Theorem 1,

i—1
vuex (R; Y, 513" ¢, +4e,») .
i=1

Hence, by S(A, 9),

4 iy i 4) +13A2
. i—jy i—j+1
|U|<(i21513 A +4A)|R|<————1_13A IR|,
and then
B 41 +13A°
1BI=IR|-|U|>(1-222L) |R).

Similarly, from part (ii) of Theorem 1 we deduce that either |V|<
@Ar/(1-131)|S] or |U|<((2A +13A%)/(1—13A)+ 8)|S]|.
In either case, | V| <((4A +13A%)/(1 —13X)+ 0)|S|. Therefore,

. 2
cl=1si-1vI>(1-0 -4 ) 51,

1-13A

as required.
Consider the following additional conditions on (% )iz1 and (W )izo:
(a) There exists a constant 1 >0 such that, foranyi =1, RE R, andk =1,

R* = Q (mod N,-,)

implies | R*| < (1+7)|Q], i.e. R* is almost (up to ) the shortest representa-
tive of its coset modulo N;_,.
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(b) The lengths of words in %, are bounded by some constant w;,i =0.
(c) Denote n; = min{| R | l R € &}, j = 1. The constants A, 1, w;, 7; satisfy the
following inequalities:
4W,' 1 1—- n 4W,‘_.1 4A + 13A2 1

m o 1tn’ m TP1-DBA “1xq D

CoROLLARY 2. Let (Ri)i=1 and (W.)izo satisfy S(A, 8), (L) and the additional
conditions (a), (b), (c). Then, in the notation of part (i) of Theorem 1 if R = BU
then

|Z7'U'Z,|<|A|, hence |W\Zi'U7'Z,W,|<|W]|

and if B=R"™R’ then |Z{'R'Z,|<|A|, hence |W,.Z{'R'Z;'W,|<|W]|.

Proor. Let R = BU. Since A™'Z;'BZ,E€ N,_,, it follows that R = Z,AZ5;'U
(mod Ni,). Then, by (a), |[R|=(1+ )| Z.AZ;'U|. By (b), | Z| = wi_; and, by
(©), |R| = n:. Therefore, | Z,| <(wi-i/n:)| R|. Similarly, | Z,| < (wi-i/m)| R|. By
Corollary 1, | U|< ((4A +134%/(1 - 13A))| R|. Then

1 4A+13A° 2w 1)
= —
l“"=(1+1, —1r ) IR

On the other hand, | Zr' U™ Z,| < @w,-/m + (@A +13A3)/(1 ~ 130))[ R|. By (0),
2W,'A1 +4/\ + 13A2 1 2W.'—1 4A + 13A2

m | 1-13A 1+n  m  1-13

and, therefore, [Z7'UZ,|<|A| and | W, Z7' U Z,W,| < | W|.
Let B=R™R'. Since A 'Z{'BZ, € N,_,, it follows that

R™'=Z,AZ;'R" (mod N,_,).
Then, by (a), (m +1)|R|<(1+7)|Z,AZ;'R"|. We obtain

- m+1_2w,-_,_4|R”])
'A'=(1+n 7 |R| IRI.

We have | Zi'R'Z.|=@wi_i/m +|R’|/|R|)|R]. Since |R’|+|R"|=|R], by
(©),
2W- 1 [R_1=m_ 2w 1+(1_L&'J>
|R|—1+"I N |R|
m TI+1 2Wi—1_[R"I=m+1_2wi—1_lR’i|.
=T+ n [R| 1+m = |[R]

Therefore, | Z7'R'Z,|<|A| and | W, Z;'R'Z,W,| <| W|, as required.



10 E. RIPS Isr. J. Math,

If R=BU, take W':=W,Z7'U'Z,W, and if B=R"R’, take
W': W,Z7'R'Z,W,. We have W’ =W (mod N;) and, by Corollary 2, | W’|<
| W|. We use this fact to show that, under certain additional conditions, there is
an analog of Dehn’s Algorithm which solves the word problem in G = F/N.

THEOREM 2. Let the set X of generators of F be countable, let (R;)iz1 and
(W:)i=o satisfy the conditions S(A, 8), (L), (a), (b), (c) and, additionally:

(d) The R have a uniformly solvable word problem, i.e., there is a recursive
procedure ®(i, W) which, when given i and a word W, decides whether W € R,

(¢) The elements of R = Uz, R: of a fixed length are uniformly listable, i.e.
there is a recursive procedure V(n) which, when given n, actually lists all words of
R of length = n (together with the indices of the R, to which they belong).

(f) The sets W: are uniformly listable.

The above hypotheses are sufficient for the effectiveness of applying Dehn’s
Algorithm to G = F/N.

(I am grateful to Professor P. E. Schupp who has corrected the statement of
conditions (d), (e), (f) of Theorem 2 (communicated to me by Professor J. J.
Rotman).)

We show now how Theorem 2 is deduced from Corollary 2 to Theorem 1.

For the moment, let us say that a word W in F is i-reducible if there exist a
factorization W= W,AW,, two words Z,, Z, € W,_,, a word B and a relator
R € R, such that A" Z'BZ, € N,_, and either (1) R=BU and | Z;'U'Z,| <
|A|, or 2) B=R"R’' with m=1, R=R'R" and | Z{'R'Z,|<|A].

If a word is not i-reducible, we call it i-reduced.

In the first case | Z,AZ;'U|=|A|+|Z7'U'Z,| <2|A|. Wehave R =BU =
Z,AZ;'U (mod N._,); hence, by (a),

IR|=(1+n)|Z.AZ;'U|<2(1+n)|A| =21+ 7)| W|.
In the second case R™ = Z,AZ;'R'™ (mod Ni_,), hence
|IR™|=(1+ )| ZAZ'R™| =1 +0)(|A|+|Z7'R'Zy)
<2(1+7)|A|=21+9)| Wl

In view of (d) and (e), we can effectively list all words in & of length
<2(1+7)|W]|. By (f), #:_. is a finite set. Therefore, if F/N;_, has a solvable
word problem, we can effectively decide whether or not a given word W is
i-reducible and in case W is i-reducible,we can effectively find a word W' such
that | W’|<|W/| and W' = W (mod N,).



Vol. 41, 1982 SMALL CANCELLATION THEORY 11

We can now show by induction on k that each F/N; has a solvable word
problem. This is clear for k =0, because No = E and F/N,=F. Let us assume
that F/N; has a solvable word problem for i <k.

Let W be a word in F. In view of the above remarks, we can effectively find a
word W, such that W = W, (mod N,), | Wo| =| W| and W, is i-reduced for any
i=k

If Wo=1then W € N.. If W, # 1, then applying Corollary 2 to W, with (R, )iz
replaced by (R')iz: where R;=R; for i =k and R;= for i > k, we obtain
Wo& N, and therefore W& Ni. Thus F/N; has a solvable word problem.

We now turn to the word problem in F/N. Let W be a word in F. In view of (d)
and (e), we can effectively find an integer h such that, for any i > h, the set &;
does not contain words of length <2(1+ n)| W/|. Since for any i, F/N, has a
solvable word problem, we can effectively find a word W, such that | W,| = | W/,
W =W, (mod N,) and W, is i-reduced for any i =h. We claim that W, is
i-reduced for any i > h as well. Indeed, if W, is i-reducible for some i then &
contains a relator R such that | R | <2(1+ n)| Wo| =2(1 + 5)| W|. By our choice
of h, this cannot happen for i > h. Thus, W, is i-reduced for all i = 1.

W = W, (mod N,) implies W = W, (mod N).

If Wy=1 then W € N. If W, #1 then, by Corollary 2, W, & N and therefore
W& N. Thus, F/N has a solvable word problem, as required.

1.5. In this paper we shall only develop the machinery, leaving the applica-
tions to subsequent papers of this series. For this reason, we should like to
describe briefly a few examples that give an idea of how the method works. Most
of these examples are known even in a stronger form. They will not be used in
the rest of the paper.

1°. Ordinary small cancellation. Consider the case in which all the sets &,
except R,, are empty and Wo={1}.

Then, for R = U,AU, € R, A is a 1-piece of R if and only if there is a relator
S =AV E R, such that V'U,U, is not freely equal to 1 or to a conjugate of
some relator T € R,.

Condition (S) now asserts that no relator can be written as a product of less
than 9 1-pieces. Since all the sets &;, i > 1, are empty, we can enlarge the sets
W., i >0, without affecting condition (S). For example, we can take W; = F for
i >0. Then condition (L) is automatically satisfied.

Theorem 1 asserts that every freely reduced word W in N contains a subword
A such that, for some R € R,, we have R = AQ:Q.Q;Q,, where the Q;’s are
1-pieces of R.
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2°. Small cancellation in free products. Let H =II% H,, a free product of
groups. For a subset & of H, let K be the normal subgroup of H generated by &
and let G = H/K.

For each H,, we have H, =F,/U, for some free group F. and normal
subgroup U, of F,. Let F =11} F, and let o : F— H be induced by epimorph-
isms F, — H,.

Consider the following families of sets (%®;)iz: and (¥, )i=o in F. Let ¥, be the
subset of U, consisting of all non-trivial cyclically reduced words. Take

=U.7,. Let R, be a subset of F such that o(®5)=9% and R, the
symmetrized closure of ®;. Let & = for i >2. Put W,={1}, W:={1}, and
W,=F foriz=2.

Then F/N,=H and F/N,;= G, where N; denotes the normal subgroup of F
generated by R, U---UR,.

Applying Theorem 1 to (%:):z1 and (W )iz0, we obtain a small-cancellation
theorem for free products of groups. However, its hypotheses are more
restrictive and its conclusion is weaker than in the known results (see, for
example, [1], p. 278), so we shall not go into details.

3°. Small cancellation in HNN-extensions. Let H be a group, P and Q
subgroups of H and ¢ : P— Q an isomorphism. Let

L =(H,t|t"at = ¢(a) for a € P)

be the corresponding HNN-extension. Let & be a subset of L, let K be the
normal subgroup of L generated by & and let G =L/K.

We have H = Fo/U for some free group F, and a normal subgroup U of F,.
Let F=F,*(t) and let p : F— L be the extension of Fy— H determined by
p()=t

Consider the following families of sets (R )iz: and (¥, )izo in F. Let R, be the
subset of U consisting of all non-trivial cyclically reduced words. R, is the
symmetrized closure of the set of words

{r'vavy' I Vi, V2€ Fo, p(VI) E P, p(V2) € Q, dp (V1) = p(V2)}

Let R be a subset of F such that p(R3) = ¥, and R, the symmetrized closure of
R;. Take R, = Dfori >3, Wo={1}, W, ={1}, W.=F,and W, = F for i = 3.

Then F/N,= H *(t), F/N,= L and F/N;= G. Applying Theorem 1 to (R )iz
and (W:)iz0, we obtain a small cancellation theorem for HNN-extensions of
groups, which is, however, considerably weaker than the known results (see, for
example, [1], p. 292).
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4°. Let F be a free group on free generators x, y. Let U;, U,, « - - be a sequence
of words in F and n,, n, - - - a sequence of positive integers. Let k,, k, - - - and
1, L, - - be two sequences of positive integers such that k; <[ for all i = 1.

We define words Vi, V,,--+ and sets of words R, R,,--- inductively, as
follows:

Suppose that V,, V,, -+, Vi, and R,, &>, - - -, Ri_, have already been defined.
Let V; be a shortest possible word such that U; = L' V.L; (mod N;_,) for some
L, Let

k+2 !

Ti:=xy "' xy - xy.

Define the set R; by
R; :={T§"V?1T€ZV?2- - Tf"V?',‘Z pitng=0,r=12,--- } .
j=1

To each R’ € R we assign a reduced cyclically reduced word R” such that R” is
freely equal to P~'R'P for some P. Let ®:={R" | R'€ R} and let &; be the
symmetrized closure of R.

In a subsequent paper we intend to show that, if the sequences k,, k-, - - - and
L, b5, - - - and the sets ¥;, i =0, are suitably chosen then conditions (S) and (L)
are satisfied.

Then part (ii) of Theorem 1 implies that N# F and therefore the group
G = G/N is non-trivial. On the other hand, it is immediate from the construc-
tion of G that T.N is the n;-th root of V.N in G since ] contains the word
THV;'. Then (L;'T.L:)N is the n;-th roof of UN in G.

Therefore, for a suitable choice of the sequences U,, U,,--- and ny, ns, - -+, G
will be a finitely generated non-trivial divisible group.

§2. Van Kampen diagrams and restatement of the main results

2.1. DErFINITION 2. Maps in the plane. Let E? denote the Euclidean plane. We
shall consider only piecewise linear subsets of E’. If S CE’, then bd(S) will
denote the boundary of S; the topological closure of S§ will be denoted by
clos(S) and the interior of S by int(S). compl(S) will denote E*\ S.

A vertex is a point of E*. An edge is a bounded subset of E* homeomorphic to
the open unit interval. A region is a bounded set homeomorphic to the open unit
square. A map M is a finite collection of vertices, edges and regions which are
pairwise disjoint and satisfy the following conditions:

(i) If e is an edge of M, there are vertices P and Q (not necessary distinct)
such that clos(e)=e U{P}U{Q}.
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(i) If @ is a region of M, there are edges e e, ---,e, in M such that
bd(®) = clos(e;) U - - - Uclos(e).

An example of a map is shown in Fig. 4.

The support, supp(M), of M is the set theoretic union of all its vertices, edges
and regions. We write bd(M) instead of bd(supp(M)) and so on. Let Reg(M)
denote the set of regions of M.

DEerFINITION 3. Paths. Every edge of M can be oriented in either of two
directions. If e is an oriented edge, we denote by o(e) the initial vertex of e and
by t(e) the terminal vertex of e. A path p = (v, €., V1, €3, * *, €m, U ) is a sSEQUENCE
of vertices v; and oriented edges e; such that o(¢;) = vy, and t(g))=v;, 1= j=m.
We use the notation o(u ) = v, and t(i) = v.. for the initial and terminal vertices
of u. We identify a trivial path (v) with the corresponding vertex v. If
o(w)=t(w) we call uw a closed path or a cycle. The path u™'=
(Um e, -+, €5, 01, €7, 1) is called the inverse of u, where e ™' denotes the edge
e with the inverse orientation. The number m is called the length of u. We
denote | |:=m (“:=" means “equal by definition”).

If 0=r=s=m, the path v = (v,, 1.1, ", €,0,) is called a subpath of n. If
r =0 we say that v is a head of u, and if s = m we say that v is a tail of u. A
path p is said to be reduced if it does not contain subpaths of the form
(v,e,v',e”",v). If A and w are paths and t(A) =o(u) then the product Ap is
defined in the obvious sense. We call the path u simple if v;# v; for i#].

Fig. 4.
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DEFINITION 4. Boundary cycles and paths. If ® is a region of M, then a
boundary cycle of ® is a cycle @ of minimal length which contains all the edges of
bd(®) and which does not cross itself in the sense defined in [1], p. 236.

For example, in Fig. S the path
a = (Vg, €1, U1, €2, Vs, €3, U3, €3, Uz, €4, Vs, €3, U3, €5, V)
does not cross itself and therefore is a boundary cycle of ®, while
B = (vo, e1, 11, €2, U2, €4, Vs, eZ‘, U, €3, U3, e;I, Uy, €5, Uo)

crosses itself and therefore is not a boundary cycle.

In a similar way we define a boundary cycle of a connected component of M
and a boundary cycle of a connected component of the complement to supp (M).

Let a be a cycle and n an integer. We define a” as follows:

(1) ° is the trivial path o(a);

() a":=aa""" for n>0;

(3) a™:=(a™)" for n <O0.
We call a” the n-th power of a.

A boundary path of a region @ is a subpath of a power of a boundary cycle of
D,

Thus, for example, according to our definition, in Fig. 5, v = (v1, €;, 02, €4, v4) is
not a boundary path of ®.

DEerINITION 5. Normalized maps. A map M is said to be normalized if none
of its regions has vertices of degree 1 on its boundary.

For example, the map M, in Fig. 6 is not normalized, while the map M, is

normalized.
Throughout this paper we shall consider only normalized maps whenever a

new map is constructed we shall verify that it is normalized.

Fig. 6.
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It is easily seen that in a normalized map each boundary path is reduced.

DEFINITION 6.  Regular maps. A map is said to be regular if each of its edges
is on the boundary of some region.

Thus, for example, the map M, in Fig. 7 is not regular, while the map M, is
regular.

It is obvious that a regular submap of a given map is uniquely determined by
the set of its regions.

Let p and v be two paths in a map M such that o(p) = o(v) and t(u) = t(v). In
an obvious way we define the notion “wu is homotopic to v in M”.

2.2. Sets of paths in ranked maps.

DEeFINITION 7. Ranked maps. A ranked map # = (M, rank) is a map M
equipped with a function

rank : Reg(M)—{1,2,---}.

DEerFINITION 8. Equivalence of paths in a ranked map. Let # = (M, rank) be a
ranked map. Let u and v be two paths in M such that o(u)=o(v) and
t(n) =t(v). Leti >0. We say that u and v are i-equivalent, writing i ~; v, if u is
homotopic to v in the map M, obtained from M by deleting all regions ® of
rank > i.

DEFINITION 9.  Sets of paths Br(k), P(®;j), $(®;c), H(P;c). Let M =
(M, rank) be a ranked map. Let ® be a region in M of rank k. Let j =1 be an
integer, and let d° =(di,d3,-**), ¢ =(c¢1, ¢z **) be sequences of numbers,
s=1,2,---.

We define sets of paths Br'¢?(0), Br'é (k), P%(®; ), $L(D; ¢), X% (DP; c)
for k =1,2,- - inductively, as follows.

(1) The set Br'g”(0) consists of all trivial paths in M.

Fig. 7.
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Now let us assume that the sets Br'y’(h) for h =0,1,-- -, k — 1 have already
been defined.

(2) A path u in M belongs to 2%7(®;j) if and only if

() p is a boundary path of ®
and there exist

(B) simple paths o, 7 €Bri’(h), where h =min(k,j)—1 (recall that rank
(®)=k);

(y) a region ¥, ¥ # &, of rank j,

() a boundary path v of ¥ such that

(€) p~novr™ (see Fig. 8).

(3) A path ¢ in M belongs to $7(®; ¢) if and only if

(o) £ is a boundary path of ®;

(B) there is a factorization & =¢§,- €. where each £ belongs to
PLAD; f(e)) for some f(e);

(y) card{e |f(e) =i}=¢ (i=1,2,--+), where ¢ = (¢, ¢z, - *) (see Fig. 9).

(4) A path n in M belongs to #'i”(®; ¢) if and only if every subpath 7, of 5
belongs to $%(P; c).

(5) A path v in M belongs to Br{’(k) if and only if v = v,gv;, where
vy, 1, € Bre(k — 1) and either o is trivial or o is a boundary path of some region
® of rank k such that

(o) o does not contain a boundary cycle of ®;

(B) o € X(®; d*) (see Fig. 10) (note that this is the only point where the
dependence on the d’’s actually appears!).

=
<

Fig. 8.
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Fig. 9.

s

Fig. 10.

In the sequel we shall fix the sequences d° as follows:
s—1

(Lo) d'=> 213", +e, s=12,--
h=1

and omit the upper index (d°). We shall also omit the lower index # whenever it
is clear from the contex to which ranked map we are referring. We thus write
Br(k) instead of Br%”(k), and so on.

In the following two lemmas we collect some properties of the sets of paths
defined above which we need later on.

Lemma 1. (a) The sets of paths Bi(k), P(D;j), $(P;c) and #H(P;c) are
closed under taking inverse paths.
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(b) ¥(®;c) is closed under passage to subpaths.

(c) Br(k —1)C Br(k) for k =1.

(d) Br(k) is closed under passage to subpaths.

(e) Let ¥ =(N,rank) be a ranked map such that N is a submap of M and for
any ® € Reg(N), rank(P) = rank, (P). Then Bry(k)CBru (k) and, for any
D EReg(N), P (D;)) C P (P;]), I (P;¢) C I (P; ¢), K (D5 ¢) C Hu (D5 ¢).

ProoOF. Parts (a), (b) and (c) are obvious. Since A ~; 1 in N implies A ~; in
M, part (e) follows by induction on k and rank(®). Let us prove part (d). For
k =0, Br(0) consists of trivial paths and the assertion is obvious. Let k >0. Let
v €Br(k). Then v = v,0v,, where v, v, €EBr(k —1) and o, if non-trivial, is a
boundary path of some region ® of rank k satisfying conditions (5) (a), (B) of
Definition 9. If 7 is a subpath of v then there exists a factorization

T = 7107,

where 7:(p:, 72), if non-trivial, is a subpath of »(g, »2); hence 7, 7. € Br(k — 1) by
the induction hypothesis and p, if non-trivial, is a boundary path of ® such that p
does not contain a boundary cycle of ®. By part (b), (5), (B) implies p €
H(D; =[2) 2:13* T¢; + e,) (recall that, by (Lo), d* = =)= 2:13*¢; + € ). Therefore
7 € Br(k). This proves the lemma.

LeMMA 2. Let I =0 and assume that, for any region Il in M of rank <1,
clos(IT) is simply-connected. If for u € Br(l) there exists a factorization u =
Maptzpts Such that t(p.) = o(us) then pips € Br(l).

PROOF. We proceed by induction on L If / =0, then u is a trivial path and
there is nothing to prove. Let { >0. We have u = v,0v; where v;, », EBr(l — 1)
and o, if non-trivial, is a boundary path of some region ¥ of rank [ such that o

I-1

does not contain a boundary cycle of ¥ and o € #(¥; 221213 7¢; + ¢). We
have to consider several different possibilities.

Case 1. uu,is a head of v,.

Then for some 71, v1 = piper; and p; = 1,0v,. We have t(u:) = o(us) = o(m1)
and then, by the induction hypothesis, w71 E€Br(l—1); hence pius=
wimiov, € Br(l).

Case 2. pu; is a tail of v,.
Then for some 7, v, = T,u2p3 and @y = v,072. As in the previous case, we
obtain 7:u; € Br(l —1) and pips = viorus € Br(l).
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Case 3. p, is a head of v, and u; is a tail of v,. By Lemma 1(d),
1, 3 € Br(l — 1), hence p,us € Br(l).

Case 4. p,is a head of v, v is a head of w,u. and v, is a tail of us.

Then for some 73, 7, and Ts, v} = U173, & = 7475, U3 = Ts¥2. By Lemma 1(d),
wiEBr(l-1) and by Lemma 1(b), if 7s is non-trivial then =€
H(V; 2121213 7¢; + &). Then pyps = pi7sv2 € Br(l).

Case 5. v, is a head of u,, us is a tail of v, and v, is a tail of u,pa.
This case is similar to Case 4.

Case 6. v, is a head of u; and v, is a tail of us.

Then for some 74, T2, 1 = W1Te, T = Telh2T7, b3 = T712. Let us show that u, is
trivial. Indeed, if u. is non-trivial, then o is non-trivial. Then since o(u.)=
t(u:) = o(us) = t(u.), m2 is a closed boundary path of ¥. Since clos(¥) is
simply-connected, every non-trivial closed boundary path of ¥ contains a
boundary cycle of ¥, a contradiction. Hence u, is trivial and then p,us;=

pipaps € Br(l).
AH the possibilities have been exhausted. The lemma is proved.
2.3. Van Kampen diagrams.

DEerINITION 10. A van Kampen diagram over a group G is a map M and a
function L assigning to each oriented edge e of M, as a label, an element L (e) of
G such that L(e")=L(e)™".

We shall consider only van Kampen diagrams over free groups. We always
assume that the label of each oriented edge is a generator or the inverse of a
generator (from a fixed set of generators).

H p=(vo,€1,01," ", Um-1,€mUnm) is a path in M, we define L(u):=
L(e)L(e2) - L(em).

Let & be a symmetrized subset of F. A van Kampen diagram is called an
&-diagram if, for any boundary cycle p of any region & in M, we have
L(p)EY.

The application of van Kampen diagram is based on the following lemma ([1],
p. 237).

LemMa 3. Let U be the normal subgroup of F generated by &. A non-empty
reduced word W belongs to U if and only if there is a connected simply-connected
S-diagram such that for some boundary cycle a of the underlying map we have
L(a)=W.
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Let (%)= be a family of disjoint symmetrized subsets of F; let ® = U, R,
and let N be the normal subgroup of F generated by ®. Let (M, L) be an
R-diagram. We define the rank of a region ® in M as follows:

rank(®P) = i if and only if, for some boundary cycle p of ®, L(p) € R;. Since R,
is symmetrized we then have L(p') € R for each boundary cycle p' of ®. We
obtain thus a ranked map # = (M, rank).

DerINITION 11, Minimal R-diagrams. For a ranked map # = (M, rank) we
define the generating polynomial gen(M)=Zz,at' €Z[t], where a, is the
number of regions of M of rank i

We introduce a nonarchimedian order on the ring of polynomials Z{¢], taking
n<t for all n €Z.

Let W be a non-trivial reduced word in N and let (M, L) be a connected
simply-connected R -diagram such that L(a)= W for some boundary cycle « of
M. Then we call (M,L) an R-diagram for W. Let M =(M,rank) be the
corresponding ranked map. We say that (M, L) is a minimal R-diagram for W if,
given any other ®-diagram (M,, L) for W with the corresponding ranked
map M, = (Mo, rank), we have gen(M) = gen(Mo).

For a minimal ®-diagram, there is a close connection between the sets of
paths introduced in Definition 9 and the sets of words introduced in Definition 1.
We have

LemMMA 4. Let (R)i=1 be family of disjoint symmetrized subsets of the free
group F and let (W )izo be a family of subsets of F satisfying condition (L). Let W
be a non-trivial reduced word in N = (U 2, ®.)" and (M, L) a minimal U.z R-
diagram for W. Let ® be a region in M of rank k = 1, p a boundary cycle of ® and
w a subpath of p.

(a) If p € P(®;)) then L(n)E P(L(p);j), j =1

(b) If p € $(P;c) then L(n) € F(L(p); ).

(©) If p € #(P;c) then L(n) € H(L(p);c).

(d) If p €Br(k) then L(n) € W..

PrROOF. We proceed by induction on k. If k =0 then parts (a), (b), (c) are
vacuous. If u €Br(0) then p is a trivial path and then L(u)=1€ %,, by (L).
Therefore, part (d) holds for k =0. Let k >0. We start with part (a). Let
u € P(P;j). Then, according to Definition 9, there exist paths v,0,7 and a
region ¥ of rank j satisfying (&), (B), (v), (8), (€) of Definition 9, (2).

Since w is a subpath of p, we have p = p;up. for some paths p,, p.. Then
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L(p)=L(p:)L (1)L (p>). Since @ is of rank k, we have L(p) € R.. Thus, L(u)is
a subword of a relator L(p) € R .

Since, by (3), v is a boundary path of ¥, there is 2 boundary cycle » of ¥ such
that, for some m =1, o™ = vo'. By (y), rank(¥) = j, therefore L(w)E R; and
L(v) is an (initial) subword of L(w)™. By (B), o,7 €EBr(h) where h =
min(k, j)—1. Then, by the induction hypothesis, L(c), L(7) € W,.

It is an immediate consequence of Definition 8 that if £, and §; are two paths in
M such that & ~,¢ then L(£)=L(£) (mod N;), where N, is the normal
subgroup of F generated by &, U R, U - - U R,. Therefore (¢) implies

L(p)=L(o)L(v)L(7)" (mod N,).
Now let us assume that k =j. We shall show that if the word
L(e)L(w)L(0)"L(#)L(p:)L(p))

(after reducing) belongs to N, = Ni_; or is conjugate modulo N, to a relator
T € R, then the R-diagram (M, L) for W is not minimal, in a contradiction with
our assumption.

In both cases we can construct an R-diagram (M, L) for
L(g)L(w)'L(o)"'L(sn)L(p;)L(p:) such that for the corresponding ranked
map #, = (Mo, rank) we have gen(Mo) < 2t*.

Since o is simple and ® # ¥ (see (B) and (y)), making a cut through o and
deleting the regions ® and ¥ we obtain an ®R-diagram M (see Figs. 11, 12).

The boundary cycle of the hole is o'w ™ 0" 'up.p:, where L(c')=L(c")=
L(o). We can therefore ““fill in”” the hole by the R-diagram (M,, L), obtaining a
new R-diagram (M;,L) for W. Let M, =(M;, rank) be the corresponding
ranked map. It is clear that

Fig. 11. Fig. 12.
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gen(;) = gen(M) —2t* + gen(Mo) < gen(M)

which contradicts the minimality of (M,L). We have shown that all the
requirements of Definition 1 with A, Uy, Uy, R, B, S, Z,, Z, substituted by L(u ),
L(py), L(p2), L(p), L(v), L(w), L(o), L(7) respectively, are satisfied. Therefore
L(n)€E P(L(p);j), i.e. L(u) is a j-piece of L(p). Part (a) of the lemma is
proved. Parts (b) and (c) immediately follow from Definition 1 and Definition 9.

Now let p €Br(k). Then p = u,on,, where pi, u,€Br(k —1) and o, if
non-trivial, is a boundary path of some region ¥ of rank k such that o does not
contain a boundary cycle of ¥ and o € #(¥; 2/ 2:13"* "¢, + &).

By the induction hypothesis, L(x:) € Wi, and L(u.) € Wiy, If o is trivial
then, by condition (L),

L(p)=L(n1)L(p2) €E Wi

Let o be non-trivial. Then o is a subpath of some boundary cycle @ of ¥. By
part (c),

k-1

L(o)EX (L(w); ; 2:13%7¢; + ek) .

Applying condition (L) we obtain
L(p)=L(p)L(0)L(12) E Wi

because L(w)E R.. This proves part (d).

The lemma is proved.

Now we are able to translate conditions (L) and (S) into a geometric condition
concerning ranked maps.

LeMMA 5. Under the assumptions of Lemma 4, let, in addition, (R, )iz1 and
(W.:)izo satisfy condition (S). Then:

(a) p& F(®;2}.,8:13"¢);

(b) for any h >k, p& $(P; =[5 7-13" ¢, + 6er + €4).

Proor. This is an immediate consequence of condition (S) and Lemma 4(b).

2.4. Restatement of the results.

Condition (S,). Let M =(M,rank) be a ranked map. If, for every k=1,
every region ® in M of rank k and every boundary cycle p of ®, we have
(@) p€ $(P; 2, 813" ¢),
(B) for any h >k, p& $(®; =1 713" ¢, + 6ex. + &1),
then we say that 4 satisfies condition (So).
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THEOREM 3. Let M =(M,rank) be a connected simply-connected ranked
map satisfying condition (So) and having a reduced boundary cycle a.

(i) There exist:

(1) a subpath B of ;

(2) an integer i = 1;

(3) a region ® in M, of rank i with a boundary cycle w;

(4) a boundary path y of ®;

(5) simple paths o, 7 €Br(i — 1)
such that B ~:_, 0 ~'y7 and either w = y8 where 8 € ¥(®; Z}215:13' 7¢; + 4e;) (see
Fig. 13) or y =w"w', with m 21 and v = 0’0"

(ii) There exist:

(1) a subpath 1 of a;

(2) an integer k = 1;

(3) a region ¥ in M of rank k;

(4) a boundary cycle n¢ of ¥
such that ecither (€ H(V;Z/,413"7¢) or, for some h>k,
EE€EH(V; 25 3:13 e + 26 +e,) (see Fig. 14).

(iii) The number of regions of M is effectively bound in terms of the length of a
and the maximum of lengths of boundary cycles of regions of M.

DEeDpUCTION OF THEOREM 1 FROM THEOREM 3. Let (M,L) be a minimal
connected simply-connected &-diagram for W with a boundary cycle a such

Ola) = ¢ (u)

Fig. 13.

cla)z t (<]

Fig. 14.
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that L(a)= W and let # = (M, rank) be the corresponding ranked map. By
Lemma 5, # satisfies condition (So). We apply Theorem 3 to 4.

(i) Take A:=L(B), B:=L(y), R:=L(w), Z,:=L(0), Z,:=L(r), U:=L(8),
R':=L(w'), R":=L(").

Then A is a subword of W =L(a). The relation B~,_,c 'yr implies
A =Z7'BZ, (mod N._,), hence A"'Z{'BZ,EN,_,. If ® =78 then R=BU
where, by Lemma 4(c),

i-1
Ue %’(R; 2 513" e, +4e;) .
“
Since @ is a boundary cycle of ®, R =L(w)€E R, where i =rank(P). If
v=w"w' then B=R™R’' where R=R'R" and m=1.

This proves part (i).

(i) Take C:=L(n), S:=L(n¢), V:=L(§).

Then C is a subword of W and § = CV. Since 7¢ is a boundary cycle of ¥, we
have S=L(n¢)ER. where k =rank(¥). By Lemma 4(c), if
EE H(V;2k.,4-13"¢;), then

k
VeEX (s; > 4-13"""e,) ,

i=1

and if, for some h >k, ¢ € ¥#(V;Zr2{ 3-13* ¢, +2e, + e,) then

k
ve %(s; 2} 3137, + 2, +e,,) .
=

This proves part (ii).

@iii) If R = U2, R is finite, then the lengths of boundary cycles of regions of
M do not exceed some constant I, depending only on &. Then, by part (iii) of
Theorem 3, the number of regions of M does not exceed some constant
effectively depending on | W| =|a| and l,. Therefore, up to a homeomorphism,
there is only a finite number of possibilities for such an R-diagram (M, L).
Hence, given a word W, we have a finite procedure to decide whether or not
WEN.

This proves part (iii).

ReMARk. It is sufficient to prove Theorem 3 in the case when M is regular
and int(M) is connected.

Indeed, given a reduced boundary cycle a of M, we can find a factorization
a = ma.a0a;'a; (see Fig. 15) with the following properties:
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ofw) = ¢ («)

Fig. 15.

(1) ao is a boundary cycle of a submap M, of M such that M, is regular and
int(M,) is connected;

(2) aia; is a reduced boundary cycle of a submap M, of M;

(3) Reg(M) = Reg(M,) U Reg(M,) (cf. [1], p. 247).

Let M, = (M, rank) be the ranked map such that rank.(®) = rank (P) for
each region ® in M, i =0, 1.

If A satisfies (So) then, in view of Lemma 1(e), 4, and #, also satisfy (S,).

Using Lemma 1(e), we see that if parts (i), (ii) of Theorem 3 hold for #, and
a,, they hold also for # and a.

In part (iii) we use induction on the length |a| of the boundary cycle a.

Since |a1a3| <|a|, by the induction hypothesis, the number of regions of M,
is effectively bounded in terms of | a;as| and lo. If Theorem 3 holds for 4, then
the number of regions of M, is effectively bounded in terms of | ao| and Jo. Then
the number of regions of M is effectively bounded in terms of |a| and .

§3. Ordered 2-ranked maps and their derived maps

3.1. For technical reasons we modify the notion of a ranked map, and
introduce the notion of an ordered n-ranked map.

DerINITION 12. Let n=1. An ordered n-ranked map is a triple M =
M,{T, T, -, T.}, <) consisting of

(1) a regular map M such that int(M) is connected;

(2) a partition of the set of regions of M,

RegM)=J,U---UT, ITNT, =D fori#j,

such that J,# <J; and
(3) 2 relation of linear order “<” on J,U---UJ, such that if PE€ T,
VY& T, and i <j then ® <V in this order.
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Given a ranked map (M, rank) such that M is regular and int(M) is connected
we can form an ordered n-ranked map (M,{7,---,J.},<), where n=
max{rank(®P) | & € Reg(M)), taking J;:={P l ® € Reg(M), rank(®) = i} and in-
troducing some linear order “ <"’ on the set J,U---U 7, such that d< V¥ if
rank(®) < rank(¥).

We need some more definitions.

DErFINITION 13.  Distance between regions. For any two regions ® and ¥ of M
contained in the same connected component of int(M), the distance du (P, V),
or simply d(®,¥), is defined as the minimal m such that there are regions
ILh=o, I, My, I, =‘!’ and edges e,,---, e, with & Cbd(Il;,_;) and
e, Cbd(IL,) for i=1,2,---,m. By definition, d(®,$)=0. If & and ¥ are
contained in distinct connected components of int(M) then d(®,V¥) is not
defined.

For example, in Fig. 16 d(®,, ®;) =2 while d(¥,, ¥;) is not defined.
The distance between regions satisfies the metric inequality

d(®, ¥) = d(P, IT) + d(I1, V).
If d(®, W) =1 then we call ® and ¥ neighbouring regions.

DEeFINITION 14.  Left-hand-side and right-hand-side factorizations of a path.
Let v be a path in M. We say that the region @ is to the left of v if v is a subpath
of a positively oriented (in the usual sense) boundary cycle of ® (or of its power).
If v is a subpath of a negatively oriented boundary cycle of ® then we say that ®
is to the right of v.

For example, in Fig. 17, @ is to the left of the paths (v,, €4, vs, 3, v3, €3, v4) and

Vy €,
< v
v
5
€
Ve
e, v ¥ % &
8
. e_, v’
M ¢
€
v [ V.

Fig. 16. Fig. 17.
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(v2, €2, 13) and D is also to the right of (v,, e, v3), but ® is not to the left of the
path (v, ey, vs, €, 1s) because this path is not a boundary path of ®.

If clos(®) is simply-connected, then @ cannot be both to the left and to the
right of some boundary path of clos(®) (recall that all the maps considered in this
paper are normalized (see Definition 5)). We may therefore say that a boundary
path of @ is positively or negatively oriented.

If IT is a connected component of the complement to M and v a path in M,
similar definitions yield the notions “Il is to the left of v”’. “II is to the right of
v”, “v is a positively (negatively) oriented boundary path of I1”.

Let u be a path in M. Traversing u from beginning to end and checking which
regions or connected components of compi{M) lie to the left of non-trivial
subpaths of u, we obtain a sequence

M A(p), Aep), -+ +, Am ()
of regions of M or connected components of compl(M), and a factorization
) #o= A )haop) - -+ Am(pt)

such that A;(u) is to the left of A;(u) and each A;(w) is non-trivial, i =
1,2,---,m. For minimal m, the sequence (1) and the factorization (2) are
uniquely defined. We denote this minimal m by I(x) and we call the correspond-
ing factorization (2) the left-hand-side factorization of u in M. We stipulate
that, for a trivial path & = (v), I(n)=0.

For example, in Fig. 17, for the path

i = (02, €1", V1, €1, U2, €6, Vs, €7, V7, €s, V1, €1, Uz, €3, V3, €5, Vs, €5, Vs, €3, U3, €5, Vs),
we have I(u)=4 and
Ai(p)=compl(M),  Afp)=®, Asn)=®, Alu)=Y,
Mp)=(v,e',v1),  Ap)=(v1, e, 02),
As() = (v, €6, Vs, €7, U, €3, U1, €1, U2, €3, U3),
Adp) = (v, €5', vs, €3, v, €37, 13, €5, U3).
Replacing “left” by “right” we define r(x), the sequence
3 Pn), PAp), - - -, Prr()s

and the right-hand-side factorization of p in M

@ B =p()pA(r) - pror()-
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3.2. Elementary maps.

DEerFINITION 15. Let M be a regular map and @ a fixed region in M. We call M
an elementary map over @ if:

(1) For each ¥ € Reg(M), ¥ # &, we have d(®,¥)=1.

(2) Every regular submap of M containing & is simply-connected.

For example, maps M,, M,, M;, M, in Fig. 18 are elementary over ®,, d,, D,
and &, respectively, but M, is not elementary over ® and M;, M are not
elementary over ®s and ®s respectively.

LEmMMA 6. Let M be an elementary map over ® and ¥ a region of M distinct
from ®. Then

(a) bd(®) Nbd(¥) contains at least one edge and is connected.

(b) bd(W¥) Nbd(M) contains at least one edge and is connected.

(c) There is a positively oriented boundary cycle (p.o.b.c.) a™'y™'B8 of ¥ such
that a = a (V) describes bd(®) Nbd(¥) and B = B(¥) describes bd(¥) N bd(M)
(see Fig. 19).

Fig. 18.
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Fig. 19.

(d) If v = y(¥) is non-trivial then, for some region % in M, 3 # ®, we have
y(¥)=8(2).

(e) If 8§ = 8(V) is non-trivial then, for some region I in M, I1 # ®, we have
5(¥) = y().

Proor. (a) bd(P) Nbd(¥) contains at least one edge because d(P,¥)=1,
and it is connected because the set clos(® U ¥) is simply-connected by Definition
15.

(b) Let N be the regular submap of M containing all the regions of M except
V. By Definition 15, N is simply-connected; therefore bd(‘¥) N bd(M) contains
at least one edge, for otherwise ¥ would be contained in a bounded connected
component of compl(N), which is impossible. Further, the complement of
clos(¥ U compl(M)) is connected because d(3., @) = 1 for all 3, € Reg(M), X # .
Hence bd(¥) Nbd(M) is connected.

(c) is evident, because «™' and B have no edges in common.

(d) Consider the left-hand-side (L.h.s.) factorization ¥ = Ai(y) - - - A»(y) where
p=1I(y) and let A(y),---,A,(y) be the corresponding sequence. Since a
describes the whole of bd(®) Nbd(¥) and B describes the whole of bd(®)N
bd(M), we have A;(y)# P, Ai(y)#compl(M), i =1,2,---,p. We show that
p=1.

Indeed, if p>1 and A,_i(y)=A,(v), then there is a bounded connected
component (b.c.c.) of compl(clos(A, (y))) such that A N & = J (see Fig. 20). Then
clos(® U A, (y)) is not simply-connected, which is impossible by Definition 15.

If p >1and A,-(v) # A, () (see Fig. 21), then A, (y) is contained in the b.c.c.
of compl(clos(® UW¥ U A,_i(y))), which also contradicts Definition 15.

Therefore, p = 1. Since vy is non-trivial we have p = 1. Denote Ai(y) by 2. Let
us show that y = 8(3).

The path y is a boundary path of 3 satisfying the following conditions:

(1) o(y) is the unique vertex of y that belongs to bd(M);
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Fig. 20.

M)

Fig. 21.

(2) t(v) is the unique vertex of y that belongs to bd(®);

(3) 3 is to the left of y (see Fig. 22).

The path 8(2) is uniquely determined by properties (1), (2), (3), and therefore
) =v=y¥).

Part (e) of the lemma is proved in similar fashion.

The lemma is proved.

3.3. Transversals and projections in an elementary map.

DEFINITION 16. Left and right transversals from a boundary vertex. Let M be
an elementary map over a region ®. For any vertex v € bd(M) we define two
paths LT(v; ®) and RT(v; ®) in the following way:

(1) If v €bd(®), then LT(v; P):=v, RT(v; P):= v, the trivial path (see Fig.
23).

(2) If for some region ¥ in M, V#®, we have v =o(y(¥)), then
LT(v; ®):= y(¥), RT(v; P):=y(¥) (see Fig. 24).

(3) If for some region ¥ in M, ¥ # ®, we have B(¥) = uv, where . and v are
non-trivial paths, then LT(v; ®):= u ' y(¥), RT(v; ®):= v8(¥) (see Fig. 25).
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Fig. 22.

Fig. 25.

We call LT(v; D) the left transversal from v to ® and RT(v; D) the right
transversal from v to ®.

DerFiNiTION 17.  Left and right projections of a vertex. Under the assumptions
of the previous definition, we define two vertices lpr(v; ®) and rpr(v;®) as

follows:
lpr(v; ®):=t(LT(v; D)), pr(v; @) : = t(RT(v; D).
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We call Ipr(v; ®) the left projection of v to ® and rpr(v; ®) the right projection of v
to .

Thus, lpr(v; ®) and rpr(v; P) are distinct only in case (3) of Definition 16 (see
Fig. 26), while in case (1) we have v = Ipr(v; ®) = rpr(v; ®) and in case (2) we
have

Ipr(v; @) = t(y(¥)) = 1pr(v; P).

DerNITION 18, Left and right projections of a boundary path. Let u be a
boundary path of M. Then there is a uniquely determined boundary path
Ipr(u; ®) of ® such that

(1) o(lpr(u; @) = Ipr(o(u); P), tlpr(p; P)) = lpr(t(w); P);

(2) lpr(p; ®) is homotopic to the path LT(o(x); ) u LT(t(n); ®) in the map
M, obtained from M by deleting the region ® (see Fig. 27). The path Ipr(u ; ®) is
called the left projection of . to ®. Replacing “left” by “right” we define the right
projection rpr(u ;D) of u to .

DEFINITION 19.  Projection of a boundary path. Let . be a boundary path of
M. If p is either trivial, or non-trivial and positively oriented, then we define the
boundary path pr(u; ®) of ® by the following two conditions:

(1) opr(p; @) =lpr(o(u); P), t(pr(u; P)) = rpr(t(n); P);

tpriv, ®)

Ry

Fig. 26.

ti otM)

? Iprip @)

Fig. 27.
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(2) pr(u; P) is homotopic to the path LT(o(u ); @) RT(t(x); P) in the map
M, obtained from M by deleting the region @ (see Figs. 28 and 29).

If & is a non-trivial negatively oriented boundary path of M then
pr(u ; ®):=pr(n~"; D) (see Fig. 30). We call pr(u ; ®) the projection of u to ®.

For example, in Fig. 31 for the path u = (v, ey, vy, €,, v2) We have pr(u; P) =
(v3, €3, Vs, €4, Us, €5, U3, €3, Vs, €4, Us, €5, U3).

t{p) )
o(p
] /ﬂ ST
Prlf‘ ’ é) Q
¢
Fig. 28.
p=v
pPrv, )
&
Fig. 29.
o(pM)
M \\
e(p)
Prip; )
¢
Fig. 30.
4 Yo
]
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DerNITION 20.  Shadow of a boundary path. Let o be a boundary path of M.
We define the shadow of u with respect to ® as the minimal submap S(u ; P) of M
containing the path u and all the regions ¥ in M, ¥ # ®, such that a(¥) or
a(¥)™ is a subpath of pr(u;®) (see Fig. 32) (cf. Lemma 6).

In the next lemma we collect some simple facts about projections, to be
needed later on.

Lemma 7. Let M be an elementary map over a region ® and p = pp, a
non-trivial positively oriented boundary path- (p.o.b.p.) of M.

(a) pr(p;®) is a non-trivial p.o.b.p. of ®.

(b) Ipr(p; @) = Ipr(ps; P)lpr(p.; ).

(c) tpr(p; ®) = rpr(p.; P)rpr(uz; D).

(d) pr(p; @) =Ipr(p:; PIprpz; P) = pr(p.; Phrpr(ps; P)

= lpr(p; P)pr(t(u.); P)rpr(p.; D).

(e) If w is on the boundary of ®, then pr(u;®)= p.

(f) If u is a boundary cycle of M then there are a boundary cycle w of ® and a
boundary path 7 of ® such that pr(p; P) = wr = T0.

(g) Assume that u is a subpath of B(¥) for some region ¥ in M, ¥ # @ (see
Lemma 6).
w is a head of RT(o(w); ®) if and only if u is not a head of B(¥) and then
RT(o(u); ®) = uRT(t(n); ) (see Fig. 33). Similarly, p™' is a head of
LT(t(u); ®) if and only if n is not a tail of B(¥Y) and then LT(t(u), )=
p'LT(o(p ); P).

Fig. 32.

RT (o(p), &)

Fig. 33.
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The proof of all parts of the lemma is immediate and is therefore omitted.
3.4. Layers in an ordered 2-ranked map.

DEerFINITION 21. Let M = (M,{7,, 9.}, <) be an ordered 2-ranked map (see
Definition 12). For any region ® € 7, and h =0, we define the set of regions
Li(D), or simply L*(d), as follows:

3 € £"(®) if and only if the following holds:

(1) d, ) =h;

(2) for any Y€ T, d2, P)=d(Z, ¥);

(3) if for some ¥ € J, we have d(Z,P)=d(Z, ¥), then $=V¥ in the given
order relation on 7. (This is the only point at which the order relation on 7 is
used.)

Let Ly (®P), or £(P), be the union of L*(®) for all h =0.
For example, consider the map M in Fig. 34, where we have taken J.=
{®,, D;, &3} and D, < P, < ®,. Here any region ® € £/ (P,) is indexed by ij.

LemMA 8. (a) Reg(M) = Uoes, L(D).
®) If >, YET, and ®#V then L(P)N L(¥)=D.
(c) For any ®€ J,, L°(®)={®} and £*(®)C T,, h >0.

Proor. Obvious.

LemMA 9. Let &,V E€ T, D< V¥, let T € (D), A€ L(¥) and assume that
d(I',A)=1. Then

d(A, W)= d(T, D) = d(A, V) + 1.
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Proor. By condition (2) of Definition 21 and the metric inequality,
dI,®)=d(, V) =dI,A)+d(A, ¥)=d(A, ¥)+1.
On the other hand, since A € £(¥), we have
d(A, V) =d(A, D).

Since ® <, it follows from condition (3) of Definition 21 that d(A, ¥) = d(A, ®)
cannot possibly be true, and so d(A, ¥) <d(A, P). Then

d(A, W) < d(A, ¥) = d(A, T) + d(T, @) = d(T, D) +1,

therefore d(A, ¥) =d(T, ®).
The lemma is proved.

DEerFINITION 22, For any ®E€ J, and h =0, let Ci{®), or simply C*(P),
denote the regular submap of M such that Reg(C*(®))=
L(DP)UL(D)U - -+ UL (D). Let Cu(P), or C(P), denote the regular submap
of M such that Reg(C(P)) = £(D).

For example, in Fig. 35, in the situation in Fig. 34, we have indicated the
submap C*(®,).

LeMMA 10. Let ®€ J,, h >0, and € L" (D). Let D=1, 1I1,,- -, I,
I1, =2 be regions in M such that d(I1;_,,IL;) =1, 1=<i = h. Then I, € £*(®) for
i=0,1,-+,h

Proor. For any i,0=i = h, we have d(IL,I1;)=i and d(II,I1.)=h —i. On
the other hand, by the definition of £*(®), d(=Z,®)=d(Il,,Il,)=h; hence

Fig. 35.
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d(P,IT;) = d(I,, IL;) = i and d(I1, I1,) = d(I1,, 2) = h —i (see Fig. 36). By condi-
tion (2) of Definition 21 we have d(Z, ¥) = d(, ®) = h for any ¥ € ,. There-
fore, for any i,0=1i = h, we have

d(I1, ¥) = d(IL, ¥) + d(II, 2) — (h = 1) = d(Z, ¥) - (h — i)
2dE,®)-(h—i)=h—(h—i)=i=d(IL,®).
If d(IT,, ¥) = d(I1;, @) then d(Z,¥)=d(5,P) and then, by condition (3) of
Definition 21, ® = ¥. Then, by Definition 21, IT; € £'(®). The lemma is proved.

CoroLLARY. Let ®E€ J,, h >0, and 3 € L (D). Then there is a region
e 2" (®) such that d(3,I0) =1.

Indeed, by the definition of £"(®) we have d(Z, )= h. Then there are
regions ® =1II,,I1;, -+, II,,, II, =3 such that h(IL_,IL)=i 1=i=h. By
Lemma 10, Il € £ (®). In particular, II,.,E L '(®) and dE,I,-,)=
d(TL,, TT,_;) = 1. We take II to be I,_..

LEMMA 11. Let ®€ J, and h =0. Let N be a regular submap of M such that
C*(®)C N C C**(®). Then int(N) is connected.

Proor. We shall show that each region % in N is contained in the same
connected component of int(N) as ®. Indeed, since N C C"*(®), we have
3 € £*(®), where k=h+1. If 3 #®, then k>0, and we have regions
I, - - -, i, such that d(IL;_,, I1,) = 1, 1 = i =k, where [I,= ®, I1, = 3. Then by
Lemma 10, I1; € £'(®), hence since k =h +1, we have

5

()

Fig. 36.
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L=® I, €Reg(C" (@) C Reg(N).

Now the condition d(I1;_,, I1;) = 1, 1 = i = k, implies that Il, = ® and I1, = X are
in the same connected component of int{(N). The lemma is proved.

3.5. Condition (SC) and the derived map of an ordered 2-ranked map.

Condition (SC). Let M =(M,{7,, 7>}, <) be an ordered 2-ranked map. We
say that it satisfies condition (SC) if, for any ®E€ J, and h =0, every regular
submap N of M such that C*(P)C N C C**'(®) is simply-connected.

For example, for the map M in Fig. 37, let 7, ={®}. Let N be the regular
submap of M with the regions ®, 3, and ,. Then C*(®)C N C C'(®), but N is
not simply-connected. Therefore condition (SC) fails to hold. On the other hand,
it is easy to see that condition (SC) is satisfied for the map in Fig. 34.

DEerINITION 23.  The regions ®" and ®'. Let M =(M,{T:,T-},<) be an
ordered 2-ranked map satisfying (SC). Then for any ®€ J, and h =0,
int(C"(®)) is connected by Lemma 11. By condition (SC), C"(®) is simply-
connected and then also int(C"(®)) is simply-connected, hence int(C*(®)) is
homeomorphic to the open unit square. We define the region ®* by

(5) &":=int(C* (D).

For some s =0, we have C(®) = C*(P). Hence int(C(P)) is homeomorphic to
the open unit square. We define the region ¢’ by

©) ' = int(C(D)).
For example, for the map in Fig. 34,

O, =ICOCPCO=0), ;=D CPC Y=}, D =D CPCP=0D

s by

1

5,

M

Fig. 37.
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DerFINITION 24.  The derived map. Let M = (M,{J, T}, <) be an ordered
2-ranked map satisfying condition (SC). We form a new map M’ such that the
regions of M’ are the regions @' for all ® € I, and the vertices and edges of M’
are the vertices and edges of M which lie on the boundary of some ¢’. We call
M’ the derived map of M.

Clearly, M’ is a regular map.
For example, the derived map of # in Fig. 34 is as shown in Fig. 38.

LemMma 12. M’ is a normalized map.

ProOF. Since each region @' of M’ is of type @' = int(C(d)), its boundary
cannot contain vertices of degree 1, hence M’ is normalized (see Definition 5).
The lemma is proved.

DEeFINITION 25.  The maps E* (®) (h = 1). Let M be an ordered 2-ranked map
satisfying condition (SC). Let ® € 7, and h = 1. We form a new map E"(®) such
that Reg(E" (®)) = {®* '} U £*(®) and the vertices and edges of E"(®) are the
vertices and edges of M lying on the boundary of some region of E"(®).

For example, the map shown in Fig. 39 is E*(®,) for the map of Fig. 34.

LeMMA 13. Under the conditions of Definition 25 E"(®) is an elementary
map over ®" (see Definition 15).

PrROOF. Let 3 be a region of E*(®), X #®"'. Then I € £"(P). By the
corollary to Lemma 10, there is a region I1 € £* (®) such that du (2, IT) = 1.

Fig. 38.
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Fig. 39.

Since, by Definitions 22 and 23, II C @"! we also have dgr» (3, ®* ") =1 (see
Fig. 40).

Let Q be a regular submap of E"(®) containing ®"'. Deleting the regions
®"' and adding instead the regions, edges and vertices of the interior of
C" (@), we obtain a map N which is a regular submap of M, satisfies
C"(®)C N C C"(®) and has the same support as Q. Since M satisfies (SC), N
is simply-connected. Then Q is also simply-connected. By Definition 15, E* (®)
is an elementary map over ®"7'.

The lemma is proved.

DerNITION 26.  Under the conditions of Definition 25, let ¥ € £*(®). Then,
considering ¥ as a region of E*(®), we can define paths a(¥), B(¥), y(¥) and
8 () satisfying conditions (c), (d) and (e) of Lemma 6 with M replaced by E"(P)
and Q replaced by ®".

3.6. Transversals and projections in an ordered 2-ranked map. Let # be an
ordered 2-ranked map satisfying condition (SC) and let M’ be its derived map.

Fig. 40.
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Given a boundary path u of some region @' in M’, we define the projection of
p to @ as follows. We have bd(®’) = bd(C(P)) = bd(C*(P)) = bd(E* (P)) for
some s 2 1, and so u is a boundary path of E*(d). Since, by Lemma 13, E*(®) is
an elementary map over &*~', we can speak of the projection pr(u ; ") of u to
@' (see 3.3). Furthermore, bd(®* ') =bd(E’'(®P)); hence pr(p;®"") is a
boundary path of E*7'(®). We can now consider the projection of pr(u; @ ') to
@*~?, and so on, until we reach ®° = ®. In a similar way we can define right and
left transversals and projections. The exact definitions will be given below in a
more general setting.

DEFINITION 27. Let ®E€ J,, 0= h =1, and let v € bd(®'). The left and right
projections lpr(v;®*) and rpr(v;®") of v to ®" and the left and right
transversals LT(v; ®") and RT(v; ®") from v to ®", are defined recursively as
follows:

) Ipr(v; ®'):=v, Ipr(v; ®*"):=Ipr(lpr(v, ®*); *7),
8) ipr(v; ®'):=v, 1pr(v; <) :=1pr(rpr(v; d*); ),
9) LT(v;®"):=v, LT(v;®*"):=LT(v; ®*)LT(pr(v; d*); ™),
(10) RT(v;®):=v, RT(v;®*"):=RT(v;P*)RT(rpr(v; d*); &*)
where 1=k =1
Let u be a boundary path of ®. We define the right and left projections

rpr(p ; @) and lpr(u ; ®*) of u to ®" and the projection pr(u;®") of u to "
recursively, as follows:

(11) Ipr(p;@'):=p, Ipr(u;®“7"):=Ipr(lpr(p; ®*); &™),
(12) pr(p; ®'):=p, rpr(p;®*"):=1priipr(u; d*); @),
(13) pr(u;®'):=p, pr(n;®*"):=prlpr(u;®*); ®)

where 1=k =1

We define the shadow S(u ; ") of u with respect to ®* recursively as follows:
S(p; ®') consists of the edges and vertices of & and

(14) S ):=S(u; ) USEr(u; )0,  1=k=L

Since ® = @° and @' = ®* for some s =0, this definition also yields transver-
sals, projections and shadows from @' to ®.
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For example, in Fig. 41 u is a boundary path of ®°. We have indicated the
paths pr(u; ®') and pr(u; ).

LeMMa 14. Let k =1 and v €bd(P'). Then
(a) o(LT(v; ®*)) =o(RT(v;P*))=v;
(b) (LT(v; ®*)) =Ipr(v; @), tRT(v; D*)) = 1pr(v; &*).

PrROOF. An immediate consequence of Definitions 17 and 27.

LeMMA 15. Let k =1 and let u be a boundary path of ®'. Then

(a) o(lpr(p; ®*)) =lIpr(o(u); @*), t(lpr(u; ®*)) = Ipr(t(n); *);

(b) o(rpr(p ; ®*)) = rpr(o(w); @*), t(rpr(p; @*)) = rpr(t(n); ®*);

(c) lpr(w; ®*) is homotopic to LT(o(w); ®* )i LT(t(w); D*) in clos(®')\ d*;
(d) pr(p; ®*) is homotopic to RT(o(u); @*) ' RT(t(w); ®*) in clos(d')\ d*.
If u is either trivial, or non-trivial and positively oriented, then

(e) o(pr(u; @*)) =Ipr(o(u); ®*), t(pr(p; ®*)) = rpt(t(u); ®*);

(f) pr(p;®*) is homotopic to LT(o(u); ®*) ' RT(t(w); *) in clos(®')\ D"
If u is non-trivial and negatively oriented, then

(®) pr(p; ®*)=pr(n™; ")

(h) o(pr(u; ®*)) = rpr(o(u); D), t(pr(u, ®*)) = Ipr(t(n); d*);

(i) pr(u;®*) is homotopic to RT(o(u); D*)'p LT(t(); D*) in clos(d')\d*.

Proor. All the assertions of the lemma immediately follow from Definitions
16, 18, 19 and 27 and part (a) of Lemma 7.

LEMMA 16. Let ®E€ J, and k =1; let u = ppt» be a non-trivial p.o.b.p. of
@&'. Then all the assertions of Lemma 7 remain valid if ® is replaced by ®* and
ve L (@)U UL (@)

PrROOF. An immediate consequence of Definition 27 and Lemma 7.

K o)

| proe gy
¢(n)

P’(H;TQ)‘ -

Fig. 41.
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LeMMA 17. Let ®E€J, and let pu be a pobp of ®. Let u=
A(p)A{p) - Ao (pt) be the left-hand-side (Lh.s.) factorization of u in M and
A ), Ax(pe), - -+ A, (1) the corresponding sequence of regions. Let

li=d(Aw),®), i=1,2,-P.

(a) We cannot have [_, =1, =0 for some i, 1<i=P.

() If for some i >1, _, =1 then A\, (u) is a head of B(Ai(n)).

(c) If for some i <P, L.,=1 then A,(w) is a tail of B(Ai(w)).

(d) If forsomei,1<i<P,wehavel_, =l andl.,=lthenA (n)= B(Ai()).

(e) u' is a head of LT(t(n); ®) if and only if

(@) O<hi<h<:--<lp,

(B) each Ai(w) is not a tail of B(Ai(u)).

(f) p is a head of RT(o(w); ) if and only if

(@ L>5L>--->1>0;

(B) each A;(n) is not a head of B(A:(w)).

Similar statements hold for a negatively oriented b.p. and its right-hand-side
(r.h.s.) factorization.

Proor. (a)If -, =1 =0 then Ai_,(u) = Ai () = ®. This can happen only if
either the map M is not normalized or clos(®) is not simply-connected (see Fig.
42). But each of these cases is excluded, because all the maps we consider are
normalized and, since # satisfies condition (SC) and clos(®) = supp(C%(®)),
clos(®) is simply-connected.

(b) Since L=k, Ais(p)Ai (1) is a p.o.b.p. of the map E'(®) (see Definition
25). The region A, (p) belongs to £" (®), therefore it is a region in E" (&) distinct
from &' If I, = I, then Ai_y(p) also is a region in E*(®) distinct from &', If
-y <l then A,_,(p) is contained in ®"* and therefore A;_;(n) is 2 b.p. of &'
(see Fig. 43). In both cases our assertion immediately follows from Definition 26,
Lemma 6 and Lemma 13.

The proof of part (¢) is similar; part (d) follows from (b) and (c).

A () A; (W)

Mg W

1-1

Fig. 42.
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Fig. 43.

(e) Assume (o) and (B) hold. Using part (g) of Lemma 7 and Definition 27 we
obtain that if Ap(w)”:--An(n)’ is a head of LT(t(x);®P") then
Ae() ™ Aa(m) A ()" is a head of LT(t(w); "), hence of LT(t(u); ).
Iterating this argument we conclude that p ' is a head of LT(t(u); ®).

Reversing the above argument we obtain that if ™' is a head of LT(t(u); ®)
then (a) and (B) hold.

The proof of part (f) is similar.

Analogous statements for a negatively oriented b.p. and its right-hand-side
factorization can be proved in similar fashion.

The lemma is proved.

LemMMA 18. Let @€ T, k =1, v Ebd(D'); let p be a p.o.b.p. of ®' such that
i = wip, where u3' is a head of LT(v; ®*) and u. is a head of RT(v; ®*). Then

(a) LT(v; ®*) = u1"LT(o(); D*);

(b) RT(v; d*) = . RT(t( ); D*);

(©) pr(ps; @) = pr(pi; @*) = pr(pa; ®*) = pr(v; @*). (See Fig. 44.)

Proor. An immediate consequence of Definitions 16, 27 and part (g) of
Lemma 7.

PrOPOSITION 1. Let M = (M,{T1, T2}, <) be an ordered 2-ranked map satis-
fying condition (SC), M’ its derived map, PE J, and p a p.o.b.p. of ®'. Let
pw=A(p)A(p) - A, () be the Lhs. factorization of p in M and
As(pe), Ax(e), -+, Ap (1) the corresponding sequence -of regions. Let I =
dAi(p),®), 1=i=p.

Assume that A (u)# B(Ai(p)) for each i such that |, >1. Then there is a
factorization . = u'u"u"” such that

(1) 1’ is a head of RT(o(u); P);

(2) (u")" is a head of LT(t(n); P);
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(3) if u" is non-trivial then n" is on the boundary of ®' and u" = 010, - o,
where either a; is on the boundary of ® or o; = B(3;) for some region 3 € £'(P),
1=j =gq (see Figs. 45 and 46).

PROOF. Write p = p'uo, where ' is the maximal head of u which is also a
head of RT(o(p ); ®). If o' is a head of LT(t(w); ), we take pu":=t(u"), a trivial

Uy) [ \4 H,

@e

RT ((u); @*) Lr (ofu); g*)

Priv; gt

w” is trivial

Fig. 45.
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" is non-trivial

Fig. 46.

path, and " := u, and we are done. So let us assume that u,' is not a head of
LT(t(x); P). Then we can write po= """, where u" is the maximal tail of u,
such that u”' is a head of LT(t(u); ®) and " is non-trivial.

Consider the Lh.s. factorization " = A (" )AAn") - A, (u") of u" in M, and
let Ai(pe"), Aop"), -+ +, Ag (") be the corresponding sequence of regions. Let
m;:=d(A; (u"), P), 1 = j = q. By assumption, there is no 3 € L(®) with d(Z, ®) >
1 such that B(Z) is a subpath of u. Since n” is a subpath of u, we obtain

1° If m; >1, then B(A; (") # A (1”).

2°, If my>0, then A,(p”) is a head of B(A.(un")).

Indeed, if A,(x") is not a head of B(Ai(n")), then by part (g) of Lemma 7,
M) is a head of RT(o(A(u");®™")=RT(o(n");®™'), hence of
RT(o(ie"); ®). Then by part (b) of Lemma 18, p'A:(1") is a head of RT(o(u ); ®),
contradicting the maximality of u’.

Similarly, we have

3°. If m, >0, then A, (u") is a tail of B(A,(1")).

4°. Let m = max;m;. If m >0 and m; = m for some i, then, for this i, A, (u") =
B(A:i (")

Indeed, if i =1, then by 2°, A;(n") is a head of B(Ai(n")). If-i >1, then
mi_, = m; = m, hence, by part (b) of Lemma 17, X;(n") is a head of B(A:(n")).
Similarly, using 3° and part (c) of Lemma 17, we see that A;(s") is a tail of
B(A+(11")). The path B(A;(u")) is either simple or a boundary cycle of ®™. Then
the non-trivial path A;(u"), being both a head and a tail of B(A;(n")), must
coincide with it.

Comparing 1° and 4° we obtain that m; =1 for j =1,---,9, and hence u" is a
boundary path of ®'. If m; = 0 then A; (") is on the boundary of ®, and if m; =1
then by 4° we have A, (1") = B(A;(1")) and A; (1") € L'(®). Thus, (3) is satisfied.
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We have i = u'u"pn", and conditions (1) and (2) are satisfied by the construc-
tion of u', " and p".

This completes the proof of Proposition 1.

3.7. Submaps. Again, let M =(M,{J,, 72}, <) be an ordered 2-ranked map
satisfying condition (SC). Let N be a regular submap of M such that int(N) is
connected and I, N Reg(N) #J. The linear order “ <" on 7, induces a linear
order on 7, N Reg(N), which we again denote by “ <. Then, by Definition 12,
N =(N,{7:NReg(N), 7.NReg(N)}, <) is an ordered 2-ranked map.

The example in Fig. 47 shows that & need not satisfy (SC) in spite of the fact
that # satisfies (SC). Here 7, = {®,, ®,}, &, < ®,. In M, C (P;) contains 2, and
35, while Cy (®.) contains 3,, while in W, Cy (P) contains 2, 3, and . For the
submap Q of N with the regions ®,, 3, %; we have C(®,) C Q C Ci(D.), but Q
is not simply-connected.

This example shows also that C%(®) N N may differ from C{(®).

We now present a sufficient condition under which the submap N satisfies
(SC), and all the constructions of the previous section applied to & yield the
same results as if we were working in /. We start with the following general
lemma.

Lemma 19. Let ® € T, and assume that, for some h =0, C%(®)C N. Then
C{(@) NN C Ci(®).

PrOOF. Let 3 be a region in Ci"(®)NN and let I:=dyu(P,X). Then
| = h +1. We shall show that 3 € £\(®). There are regions I, - -+, II,_, such

M




Vol. 41, 1982 SMALL CANCELLATION THEORY 49

that d (L, IL)=1, 1=i=1l where II,=® and I, =3. By Lemma 10,
I, € £'(®), 0=i =1 Since by assumption, C'i{¢)C N, we have LW(P)C
Reg(N) for i = h, and therefore II; € Reg(N) for i =0,1,---,1—1 (recall that
1 = h +1). Since II;_, and II; are neighbouring regions in M, there is an edge on
their common boundary and then they are neighbouring regions in N too. Hence
dv(I1io, IL) =1, 1=i = Thus dn (P, 3) = dn(IL,II,) = . On the other hand,
since N is a submap of M, we have [=du(®P,3)=dn(D,2), therefore
dn (dJ, 2) =1

Let ¥ be a region in 7 N Reg(N). Since 3, € C%'(®), we have | =du (P, 2) =
du (¥, 2) and if the equality holds then & =¥. But then

du (D, 3) = I = dp (P, 5) = due (@, 3) = dn (¥, 3)

since N is a submap of M. If dn(®,2)=dn(¥,32), then also du(P,2)=
dum (¥, 3), and therefore @ = W. Then, by Definition 21, 3 € L)(®), as required.
The lemma is proved.

DEFINITION 28. Let M = (M, {7, 7.}, <) be an ordered 2-ranked map satis-
fying (SC). Let Q be a submap of M. We call Q a 1-submap of # if there is a
subset % of 7, such that supp(Q) = Usca clos(®').

For example, putting U = {®,, &5} for the map # in Fig. 34, we obtain the
1-submap Q shown in Fig. 48.

Lemma 20. If N is a regular 1-submap of M, such that int(N) is connected
then for each ® € 7, Reg(N) and h =0 we have Ci{P) = C'(®) and C (D) =
Cu (D).

Fig. 48.
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Proor. Let 9 be a subset of 7 such that supp(N) = Uyea clos(¥’). Then
U C T,NReg(N). On the other hand, by the construction of the derived map
M’, each ¥’ € Reg(M’) does not contain regions from J, except for ¥, and
therefore U = J,N Reg(N).

Since € T, NReg(N)= U, we have clos(®’)Csupp(N). Then, for any
h=0, C'(®)CN. By Lemma 19, Ci"(®)NN = CiL(®)C CX¥'(P), h =0.
Obviously, we also have C%(®) = C5(®), the map consisting of the single region
® and the edges and vertices on its boundary. We must now prove the inverse
inclusion C{®) C C"(®P). Let 3. be a region of Ci{(®). By Lemma 8, 3, € £L%(¥)
for some YE€ J, and k 20. In particular, 3 C V. Since %€ Reg(Ci{P))C
Reg(N), it follows that 3 C supp(N) N¥'. By assumption, N is a 1-submap;
hence ¥’ C supp(N) and then ¥ € Reg(N). By Definition 22, 3, € £%(¥) implies
that 3 € Reg(C*%(¥)). As already shown, CiYW(¥)C CH¥). Comparing
3 € Reg(Ci(®)) and 2 € Reg(Ci(¥)), we obtain ¥=®&. Moreover, k =
du @, P)=dn(E,P)=<h, and so 3 E Li(P) implies 3 E Reg(Cu(®P)). Thus,
Ci{®) C Clu(®). The lemma is proved.

COROLLARY. Let N be a regular 1-submap of M such that int(N) is connected.
Let ®€ J,NReg(N). Then:
(a) The ordered 2-ranked map N =(N,{J,NReg(N), T-NReg(N)}, <)
satisfies condition (SC) and the derived map N’ is a submap of M'.
(b) Lo(D) = L2(D) (h =0), Ly (D)= Lu(P) and EXP) = ElW(®) (h =1).
(c) For any k =1, v€bd(®') and a b.p. p of &'
lpr(v; %) =1Ipru(v;®*),  rpry(v;d*) = 1pra(v; d),
LTw(v;9*)=LTk(v;®*), RTs(v;P*)=RTu(v;d*),
Pra(p; ®*) =pru(p; @),  Ipra(p;®*) =Ilpra(u;d*),
1pry (i3 P) = 1pruc (p; @*).

§4. Ordered 2-ranked maps with limitations on indices of inner regions of
rank 1

4.1. DEFINITION 29. The index of a region in a ranked map. Let M =
(M, rank) be a ranked map, let ® be a region in M and i a boundary path of @
such that ® is to the left of u. Let

(1) p=p()paAr) - pa(pe)

be the r.h.s factorization of u in M and
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() Py(u), Px(), 5 Py ()

the corresponding sequence of regions or connected components of compl(M).
We define the index of ® in M relative to p, ind 4 (P; p), or simply ind(®; ), as
the formal sum

ind(®; p) = ; de,

where d, is the number of connected components of compl(M) in the sequence
(2) and d; is the number of regions of rank i in the sequence (2), each counted
with its multiplicity, i =1,2,--.

If @ is to the right of u, we define

ind(®; p):=ind(®; ).

By the index of a region ® in M, ind 4 (®), or simply ind(P), we mean the
index of ® relative to a positively oriented boundary cycle pu of ® such that g is
minimal.

It is easy to see that ind(Q) is independent of the choice of a p.o.b.c. u of ®
with minimal 4.

For example, let for the map # in Fig. 49, rank(II) = rank(¥) =2, and all
other regions are of rank 1. Then

ind(®) = 3e;, ind(A)=eo+e;, ind(V¥)=e;+6e,+ 7e,,
indl)=e,, ind(Z)=-e;, ind(l)=2e,+e;+2e..
Let d = Ei;() d.'e,', f = Eigoﬁe.'. We Write d §f lf d,‘ éﬁ for i ;0.

DEeriNiTION 30.  Let @ € Reg(M), d = 220 diei. Let u be a boundary path of
®. If ind(P; n)=d, we write u € &(d).

M = (M, rank)

Fig. 49.
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Comparing Definition 9 and Definition 30, we obtain

LemMa 21.  Let ® be a region in M such that clos(®P) is simply-connected. Let
u be a b.p. of P.

(a) If rank(®)=1, then for any d =3z de;, p €EI(®;d) if and only if
u € D(d).

(b) For any m 20, u € I(P, me,) if and only if u € ®(me,).

The proof is obvious.

DerINITION 31.  Inner region of M. We call a region ® in M an inner region if
bd(®) Nbd(M) contains no edges.

Let ind(®) = Z.z0die;. ® is an inner region if and only if do=0.
Thus, for example, in Fig. 50 @ is an inner region in M.

Conditions D(p) and D(q;1). Let M = (M, rank) be a ranked map. We say
that # satisfies condition D(p) if it contains no region ® of rank 1 such that
ind(®) = pe;. We say that # satisfies D(q; 1) if it contains no region ® of rank 1
such that ind(P) = ge, + e..

4.2. Let M =(M,{T,,J},<) be an ordered 2-ranked map satisfying condi-
tion (SC).

LEMMA 22. Let ®€ T, h =1 and 1€ L* (D). Then:
(a) y(II)€Il(e)) and s(IT) € Il(e,) (see Definition 26).
(b) If h =1, then a(I)EIl(e;) and

ind(IT) = 2e, + e, + ind(I1; B(II)).
(¢) If M satisfies D(5) and D(3;1), then for each h > 1, a(I) E11(2¢,) and
ind(IT) = 4e, + ind(I1; B(IT)).

Fig. 50.
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PrOOF. (a) and the first statement of (b) follow immediately from Definition
26 and Lemma 6. The second statement of (b) follows from the obvious
inequality

()  ind(IT) = ind(IT; a (IT)) + ind(IT; B()) + ind(IT; y(IT)) + ind(IT; §(IT)).

(c) We use induction on h. Let a(II) = A;A; - - - A, be the Lh.s. factorization of
a(Il) in M and Ay, A, -+ -, A, the corresponding sequence of regions, where
p = l(a(D), A =A(a(l), A =Ai(a(l). Since I1€ L*(P), we have A, E
L (®), 1=i = p. By Lemma 8(c), A; € 7, and then ind(Il, a(II)) = pe,. (See
Fig. 51.)

If p >2, then A; = B(A:) and so ind(Az, B(Az)) = e;. If h =2, then, applying
part (b) to A,, we obtain ind(A,) = 3e, + e,, contradicting D(3; 1).

If h >2, then, applying the induction hypothesis to A., we obtain ind(A;) =
Se,, contradicting D(5). Therefore p =2 and so ind(IT; a(I1)) = pe, = 2e,. The
second statement follows from (3).

The lemma is proved.

LEMMA 23. Assume that M satisfies D(6) and D(4;1). Let PE T, and let p
be a p.o.bp. of ', h>1. If n is a subpath of a(ll,)a(IL;) for some
I1,, I, € £"(®), then for the Lh.s. factorization

ﬁ hy2 ™~

Fig. 5L.
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(4) l-"zAlAZ”'Ap
of win M we have p =2.

ProOF. We argue as in the proof of Lemma 22. Let A, Az,- -+, A, be the
sequence of regions corresponding to the factorization (4). If p >2 then
A2 = B(A:) and then for h =2, ind(A,) = 4e, + e;, contradicting D(4; 1), and for
h >2, ind(A;) = 6e,, contradicting D(6) (see Lemma 22 (b) and (c)). Therefore,
p =2, as required.

LemMMA 24. Assume that M satisfies D(6) and D(4;1). Let PE T,. Ifpisa
subpath of B(I1) for some I1€ £*(®), h =1, then:

(a) either lpr(w; ®) is trivial or lpr(u; P) = a(2,) for some 3, € L'(P);

(b) either tpr(u; ®) is trivial or pr(u; P) = a () for some 2, € L'(P);

() either pr(; D) is trivial or pr(p;®) = a(S:) or else pr(se; D) = a(Sa)a(S.)
for some 3,3, € L(P).

In particular, for any vertex v € bd(®’), lpr(v; P) E D(e,), 1pr(v; P) € D(e;)
and pr(v; ®) € O(2e,).

Proor. For some k = h, let us consider pr(u ; ®*). By induction on h — k we
show that either pr(u;®*) is trivial or pr(u;®*)=a(I}) or else pr(u;d*)=
a(T)a(T,) for some Iy, I, € £*(D).

Indeed, for k = h, pr(u; ") = o(a(ID)) for u = o(B(I)), pr(n; ®*) = t(a(I)
for u =t(B(I1)) and pr(u; ®*) = a(II) otherwise.

If pr(p ; @) = a(I'))a(I) for some I, I'; € £**(®) and k >0 then according
to Lemma 23, the path a(I')a(I’,) is a subpath either of B(A,) or of B(A:)B(A2)
(but not of B(A,) or B(Ay)) for some A,, A, € £*(P) (see Fig. 52).

In the first case pr{a(l)a(l,);®*)=a(A;) and in the second case
pr(a(M)e(l2); ) = a(A)a(ly).

If pr(u ; @) = a([y) and k > 0 then a similar argument applies (see Fig. 53).

rnoir noLh
aflf)| «tr,) a(h)| ()
A, 5, |8,
«(l,) u(,Al) «(/A,)
@ (b)

Fig. 52.
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r n
d(‘r,) d(g,
4, 4, 4,
«(A,) «(8,)] «(a,)
(@) ®)
Fig. 53.

If pr(u;®*) is trivial and k >0 then either pr(u;®*™") is trivial or
pr(p ; ") = a(A) for some A € £“(®). This proves part (c).

Parts (a) and (b) can be proved in a similar way. We have only to observe that
in Fig. 53(b)

Ipr(a(l); @)= a(d),  mpr(a); ®*)=a(A).
The lemma is proved.

4.3. Paths on the common boundary of two regions in the derived map. Let
M = (M,{T1, T}, <) be an ordered 2-ranked map satisfying conditions (SC),
D(8) and D(6;1).

LemMMA 25. Let ®,VE T,; let T € £(®) and let 7 be a boundary path of T
and also a boundary path of V. Let | = d(T', ®). Assume that one of the following
conditions holds:

(@) V<P and =1 (i.e. T #P),

B) P<V¥ and | >1,

(y) @<V, I =1 and 7 does not contain boundary edges of V.

Then ind(T', 1) = 4de,.

ReEMARK. For this lemma we actually need only (SC), D(5) and D(3;1).

PrROOF. Without loss of generality, we may assume that 7 is non-trivial and
¥ is to the left of 7. Let 7 = A;A. -« A,-be the Lh.s. factorization of 7 in M and
let Ay, A, -+, A, be the corresponding sequence of regions, where p = I(7),
A=A (1), Ai = Ai(7), 1 =i = p. We derrote |, = d(A,, ¥), 1 =i = p (see Fig. 54).

1°. [=zlforalli1=i=p

Indeed, in case (&) we have ; = ! =1 by Lemma 9. In case (B), an application
of Lemma 9 gives [ = I —1= 1. In case (y), A: # ¥ for all {, because otherwise 7
would contain a boundary edge of ¥. Therefore I = d(A, ¥)= 1.
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Fig. 54.

In particular, using Lemma 8(c), we obtain A; € 7, for all i. Therefore:

2°, ind(T'; 7) = pe..

3°. There exists m such that ;, =m —1 or m for all i

Indeed, in case (o), | =], =1+ 1 by Lemma 3 and we take m = [ + 1. In cases
(B) and (y) the same lemma gives ; =1 =] +1; hence I — 1=, = and we take
m=1

Because of 2° we have to show that p =4. Suppose that p >4, and consider
the sequence of numbers I, b, - - -, . We say that for some j,1<j<p, | is a
weak local maximum if |, =, and l;., = I.. It is easy to verify that the longest
sequence taking only two values and having no weak local maxima is
m,m —1,m —1,m. Hence there exists j,1 < j <p, such that |, =, and [, = .
Then, by Lemma 17(d), B(A;)=A;. Since [=1, we have '€ J,, hence
ind(A;, B(A;)) = er.

If [; =1 then, by Lemma 22(b), ind(A;) = 3e; + e,, contradicting D(6; 1), and if
[, >1 then, by Lemma 22(c), ind(A;) = Se,, contradicting D(8).

Therefore necessarily p =4. Thus ind(T', 7) = pe; = 4de,.

The lemma is proved.
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ProPOSITION 2. Let M = (M, {7, T>},<) be an ordered 2-ranked map satis-
fying conditions (SC), D(8) and D(6;1). Let &,V € J.. Let u be a non-trivial
p.o.b.p. of @' which is simultaneously a n.o.b.p, of V'. Then there is a factorization

) p=pn"p”
and, if u" is non-trivial, a further factorization

©) 1= papte s

such that

(a) p' is a head of RT(o(w); P).

(b) "' is a head of LT(t(n); D).

(©) pr(un'; D) € B(2e1), pr(n”; P) € ©(2e,).

(d) pr(p’; ¥) € ¥(dey), pr(n"; ¥) € ¥(4e1).

If ®<V in the order on I, and " is non-trivial then

(e) " is on the boundary of ®' (see Definition 23).

(f) Each u; contains a boundary edge of V¥, and if h Z2 then .- - * pn_1 ison
the boundary of V.

(g) The factorization (6) is the Lh.s. factorization of n" in M.

(h) For each j, 1 =j = h, either p; is on the common boundary of ® and V¥ or
w; = B(T;) for some T'; € £'(P).

Q) If pi=B{) then pr(p'pn,; V)EWVY(Se) and if pwn =B{I:) then
pr(psp”; W) € ¥(Se,) (see Fig. 55).
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If ¥ <® and u" is non-trivial, then instead of (e), (f), (g), (h), (i) we have the
following :

(¢') p” is on the boundary of ®.

(f) w” is on the boundary of V'

(g") The factorization (6) is the r.h.s. factorization of n" in M.

(h’) Foreach j, 1<j <h, either y; is on the common boundary of ® and ¥ or
w; = B(L)™" for some I1; € £'(WV). If w, is not on the common boundary of ® and
W, then w. is a subpath of B(IL)™ for some II,€ £L'(¥). If ux is not on the
common boundary of ® and WV, then w. is a subpath of B(IL)"' for some
I, € £'(¥).

(i") If w1 is not on the boundary of ¥, then pr(p'un,; V) € ¥(5e,); if un is not on
the boundary of ¥, then pr(u,u";¥)€ ¥(Se;) (see Fig. 56).

Proor. Since A satisfies (SC), clos(d’) is simply-connected and therefore the
fact that u is a non-trivial p.o.b.p. of @ and a n.o.b.p. of ¥ implies that ' # ¥’;
hence ® # V.

We have:

1°. Let I' € £(P) and let 7 be a boundary path of I' which is a subpath of wu.
Suppose that one of conditions (a), (B), (y) of Lemma 25 holds. Then 7 # B(I').

Indeed, by Lemma 25, r €El'(4e;). If 7= () then, by Lemma 22, if
1 =d(I',®) =1 then ind(T') = 6e, + e, contradicting D(6; 1) and if | =d(T',P)>1
then ind(y) = 8e; contradicting D(8). Therefore 7# B(I'), as required.

We are now in a position to apply Proposition 1 to the regions ®, ¢’ and the
path u. We obtain factorization (5) with the following properties:

S|

Y<

Fig. 56.
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2°. w'is a head of RT(o(u); P).
3°. u"is a head of LT(t(n); D).
4°, If u” is non-trivial, then p” is on the boundary of ®' and there is a
factorization
(7) l.L"=0']0-2."a-q
such that for each j, 1 = j = g, either o; is on the boundary of ® or o; = B(I’;) for
some I; € £'(®). Moreover, we may assume without loss of generality that (7) is
the Lh.s. factorization of u” in M.
Comparing 1° with 4°, we reach the following conclusions:
5° If ¥ <® and " is non-trivial then u” is on the boundary of ®.
6°. If @<V, u” is non-trivial and o; = B(I;), then ¢; contains a boundary
edge of V.
On the other hand, by Lemma 9, applied with I' = ®, we obtain:
7°. If ® <V¥ and o; is on the boundary of ®, then it is also on the boundary of
V.
Using 6° and 7°, we obtain:
& If &<V, u"is non-trivial and g =2, then o, - - - 0,-11s on the boundary of
v,
Indeed, consider the path «:=pu""". Applying 2°, 3° and 5° with &, ¥,
replaced by ¥, ®, x, we obtain a factorization

(8) K = KIK”K”'

such that

(@) «'is a head of RT(o(x); ¥);

(B) "' is a head of LT(t(x); ¥);

() if k" is non-trivial then k" is on the boundary of .

Since «’ and k"' are heads of transversals to ¥, they do not contain boundary
edges of V.

Comparing (7) and (8), we see that

-1 -1 -1, 1—
0102 Oga0y = ”’H___ K= et

By 6° and 7°, 0, and o, contain boundary edges of ¥; therefore k™" is a head of
o1 and k" is a tail of o,. Then o+ * - 0, is a subpath of "' hence o, - - - 7, is
on the boundary of ¥, as required.

9. pr(n’; D) € P(2er) and pr(n"; ) € P(2e,).

Indeed, since by 2° u' is a head of RT(o(u); ®), it follows by Lemma 18 that
pr(n’; @) =pr(o(u); @) and then by Lemma 24(c) that pr(o(u); D) € ®(2e,).
Similarly, we obtain
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pr(u"; @) = pr(t(n ); ®) € ®(2e1),
as required.

10°. If ® <V and u does not contain boundary edges of ¥, then pr(u; ®) €
<I>(4e1).

Indeed, if u” is non-trivial, then by 6° and 7° i contains boundary edges of V.
Therefore w” is trivial and then, by 9°, Lemma 16 and Lemma 7(d), pr(u ; ®) =
pru’un"; @) € (4e,).

11°. If ¥ < ®, then pr(u'; V) E ¥(de,) and pr(un”; ¥) € V(de,).

By Lemma 9, any edge e in u’ which is a boundary edge of ¥ is also a
boundary edge of ®. But by 2° u' is a head of a transversal to ®, hence it does
not contain boundary edges of ®. Therefore, neither does n’ contain boundary
edges of ¥. Applying 10° with ®, ¥, u replaced by ¥, ®,n'"', we see that
pr(u'; ¥) € ¥(4e,). Similarly, pr(n"; ¥) € ¥(4e,), as required.

12°. If ¥ <P, u" is non-trivial and wu, is a head of u" such that u, is a subpath
of B(II)™" for some I1 € L'(¥), then pr(u’po; ¥) € ¥(Se,).

Indeed, pr(uq; ¥) is a subpath of «(II)™". Hence pr(u,; ¥') € ¥(e,). Then, in
view of 11°, pr(n'po; ¥) € ¥(Sey).

13°, Let @< V.

1) pr(p’; ¥)EW¥(de,) and pr(n"; ¥) € ¥(de).

(2) Let u” be non-trivial. If o,=pg() for some TI,€£' (D), then
pr(n'o; ¥)E¥(Se,), and if o, =B, for some TI,€E L (D), then
pr(o,u”; ¥) € ¥(Se;).

Denote 7:=pu'"" in case (1) and 7:=0o7'u'" in case (2). In view of Lemma
15(g) and Lemma 24(c), we have to show that in case (1) pr(r, ¥) € ¥(4e;) and in
case (2) pr(r; ¥) € ¥(5e,).

Applying 2°, 3° and 5° with ®,¥,u replaced by ¥,d,r, we obtain a
factorization

(9) = T'T"T’"

such that

(o) 7' is a head of RT(o(7); ¥);

(B) 7" is a head of LT(t(7); ¥);

(y) if " is non-trivial then 7" is on the boundary of V.

Applying 9° with &, u replaced by ¥, 7 we obtain

() pr(v'; ¥) € ¥(2e:) and pr(r"; ¥) € ¥(2e,)).

If 7" is trivial, then, by Lemma 16 and Lemma 7(d), pr(r;¥)=
pr(r't"; ¥) € ¥(4e,), as required. Assume now that 7" is non-trivial. Then, in
view of Lemma 16 and Lemma 7(d), (e),
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(10) pr(r; V) = pr(7’; ¥)r"pr(r"; ¥).

Since u' is (by 2°) a head of RT(o(u); ®), we can write u' = m,m,, where m
does not contain boundary edges of ®' and 7, (if non-trivial) is on the boundary
of @'. By 4°, g, is on the boundary of ®' and therefore in both cases (1) and (2),
we can write

(11) T=t1¢,

where ¢, (if non-trivial) is on the boundary of ®' and ¢, does not contain
boundary edges of ®'.

Since, by (), 7" is on the boundary of ¥ = ¥, it is also on the boundary of &',
by Lemma 9. By (9) and (11), 1 =7'7"7" = ¢ ¢..

Since ¢, does not contain boundary edges of @', we see that 7" is a subpath of
¢1, and then 7’ is a head of ¢,. Hence 7' is on the boundary of ®'. We have
® < V¥ and therefore, by Lemma 9, 7' is on the boundary of ¥'. (See Fig. 57). By
Definition 23, ¥' = int(C'(¥)) and, by Definition 25, C'(¥) = E'(¥). By Lemma
13, E'(¥) is an elementary map over V. By (o), 7’ is a head of RT(o(7); ).
Therefore, by Definition 19, we obtain

(12) pr(7’; ¥) = pr(o(r); ¥) € ¥(ey).

L
? ¥ A
3 't‘w
RT (o0, ¥) ¥ Ror (ags )
i b d
il
yjl
case (1) case (2)

Fig. 57.
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Consider the Lh.s. factorization of u’ in M, u'=AA,-+-A, and let
Ay, Az, - -+, A, be the corresponding sequence of regions. Denote

L:=d(A;, D), 1=sj=r
Since p' is a head of RT(o(n); @), it follows from Lemma 17(f) that
L>L>-->1.,>[>0,

hence [ =22,j=1,2,---,r—1.

Therefore A;A;--- A, does not contain boundary edges of ®'. Thus by
Lemma 9, A;A; - -+ A,-; does not contain boundary edges of ¥. The path ' is a
head of 77'; hence A;LAL---A7'A7" is a tail of 7. By (y), 7" (assumed
non-trivial) is on the boundary of V.

In case (1) we have 7=’ = A;'A;L; -~ A5'A7" and then 7" is a subpath of
A7'. The path 7" is then on the common boundary of ¥ and A,, where
d(A,,®)=1 >0. By Lemma 8(c), A, € 7:; hence, by Definition 30,

(13) ' EW(ey).

In case (2) we have 7 =o7'uw" ' '=07'A7'A7L - - A2'A7Y, and then 7" is a
subpath of o1'A;". The path 7" is on the boundary of I', € £ (®)C 7, and A ;*
is on the boundary of A, € J,. Therefore,

(14) " € V(2ey).

In view of (10), in case (1) it follows from (8), (12) and (13) that pr(r;¥) €
¥(4e:), and in case (2) from (3), (12) and (14) that pr(r;D)E D(Se;). The
remaining assertions of 13° are verified similarly.

All the assertions of the proposition have now actually been proved. Indeed,
we have a factorization (5) which, by 2°, 3° and 9°, possesses properties (a), (b),
(c). Property (d) follows from 11° and 13°, (1). If " is non-trivial and @ < ¥, then
we take (6) to be the Lh.s. factorization of u” in M. Then by 4°, ¢ = h and y; = g;
forj =1, -, h. Properties (e) and (h) follow now from 4°, (f) follows from 6°, 7°
and 8°, (g) is satisfied by the construction of (6) and (i) follows from 13°.

If ©" is non-trivial and ¥ < @, then we take (6) to be the r.h.s. factorization of
p"in M and let I, IL,, - - -, IT, be the corresponding sequence of regions. Then
property (¢') follows from 5°, () follows from (¢') by Lemma 9, and (g') is true by
the construction of (6). Since, by ('), 1" is on the boundary of ¥, it follows that
0=d(dl,¥)=1for any j, 1=j=h. If for some j, 1=j=h, y; is not on the
boundary of ¥, then d(Il;, ¥) = 1. Therefore, if 1 <j <h, then d(II,_,, ¥)=1=
d(II,¥) and d(I1;.;, ¥)=1=d(II;, ¥). Thus, by Lemma 17(d), u; = 8(I1,)",
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where II; € £'(¥). Thus, property (h') also holds. The first assertion of (i')
follows from 12°. The second assertion of (i’) can be proved in similar fashion.
The proposition is proved.

4.4. An *“‘area theorem” for ordered 2-ranked maps.

PROPOSITION 3. Let M =(M,{T, T}, <) be an ordered 2-ranked map satis-
fying conditions (SC), D(6;1), D(8). Let the subset U of T, be defined by

U:={D| B E T, ind(®) =2e, +2¢,}.

Assume that M is connected and simply-connected, and let » be a boundary cycle
of M. Then card(T,\ U) is effectively bounded in terms of card(J,) and the length
of w.

ReMARK. The assumptions of connectedness and simply-connectedness can
be omitted; we have only to consider instead of @ a system of boundary cycles
describing bd(M).

Proor. Consider the derived map M'. Since # satisfied (SC), for any region
@’ in M’, clos(®') is simply-connected. Let h = card(J). For any two regions &’
and ¥’ in M’, the intersection of their boundaries, bd(®’) N bd(¥') has no more
than h —1 connected components. Therefore we can find paths pi, po, * -, e
such that

1°. Each u, is a p.o.b.p. of some regions ®; and a n.o.b.p. of some region ¥,
l=isk

2°. Each (non-oriented) edge of M’ belongs exactly to one of the paths
i, (o, ° ° 0y Pk, W,

3°, k§hih2—_l)(h —{)§%h3.

Substituting, if necessary, u; by u;', we may assume without loss of generality
that

4°. @; <W¥; in the linear order on 7,, 1=i=k.

Applying Proposition 2 to the path u;, we obtain a factorization

(15) = it
and, if w7 is non-trivial, a further factorization
(16) Q7= Maphiz " kg

with the properties described in Proposition 2.
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If p” is non-trivial, then by Proposition 2(g) (16) is the Lh.s. factorization of
. Let

(17) rl'ly FiZ) T r.‘h(i)
be the corresponding sequence of regions. We consider the set of regions
(18) U ={ly |1<j <h(i), (T, D) =1}

For any @ € 7, there may be some values of i such that ®;, =d (1=i=k).
We denote U(P) the union of all sets U; such that @, = ®. Let Q(P) be the
regular submap of M such that

Reg(Q(®)) = {®}U U (D).

Since, by (18), U(P) C L'(P), we have C(P)C Q(P)C C'(P).

Therefore, by Lemma 11 and (SC), supp(Q(®)) is connected and simply-
connected.

We denote M the map obtained from M by deleting int(Q(®)) for all ® € 7.

5° UP)C U for all PE T>.

Indeed, consider some region I'y, 1 < j < h(i), such that d(I'y, ®;) = 1. Accord-
ing to Proposition 2(f), (h), B(I';) = u; is on the boundary of ¥;, therefore
ind(T'y;, B(I';)) =e. and then, by Lemma 22(b), ind(I';)=2e;+2e,. Hence,
T; € U. In view of (18), U; C U and then U(P) C U for all ® € T, as required.

In view of 5° it is enough to show that the number of regions of M is
effectively bounded in terms of h =card(J>) and |w]|.

Let

(19) An, Aiz, DY Ail(i)

be the sequence of regions corresponding to the Lh.s. factorization of w; in M,
and

(20) Pn, Pi2y Y Pi:(.‘)

the sequence of regions corresponding to the r.h.s. factorization of w; in M.
Consider the set of regions W C 7, defined by

@ W ={1|11€ 7., ind(I) = doro + di&; + dres, d, Z 2.

C.WC{A; |1=j=13), 1=i=kjU{P,; |1Sj=r(), 1=i=k})

Indeed, let II € W. Then I1 € 7,. By Lemma 8(c), for some ® € 7>, 1 € ().
Let ind(Il) = doeo + d.e, + dze;. Since d,=2>0, there is at least one region
¥ € 7, such that d(Il, ¥) = 1. Then by Definition 21, I1 € #'(®). By Lemma 6,
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bd(IT) N bd(®) is connected and described by a (II). Therefore, in view of d, = 2,
there is a region @, € I, o # P, such that IT and &, have a common boundary
edge e. According to Definition 24, I1 C @' and &, C ®5. Therefore the edge e is
on the common boundary if @' and ®;. Then, according to 2°, for some i,
1=i =k, the path u; contains e. Then the region II appears either in the
sequence (19) or in the sequence (20) for the same value of i.

This proves our assertion.

7°. (@) card(W\U) N {Air, Aizy - - s Aap)) = 45

B) card(W N {P:1,Piz,-- -, Puiy)) =2, 1Si =k

Consider the sequence of regions

(22) 2.'1, EiZ, T 21’:(1‘)

which corresponds to the Lh.s. factorization of u! in M. Let [ = d(2,;, ¥;),
1=j = s(i). By Proposition 2(a), u; is a head of RT(o(x); ®). Then by Lemma
17(f),

L>bL> > >0

Since 3; € £(d;), by Definition 21, d(2;, ¥) = d(Z;, ;) for any ¥ € T>. Since
[, >1for j=1,2,---,s(i)— 1, we obtain that for %, 3, - -, Zise)-1 there is no-
region ¥ in 7, such that d(2;, ¥) =1, 1=j = s(i) — 1. Therefore,

WO {Z0, 20, Zsn) C{Esm)
Similarly, let
(23) I, iz, - - -, gy

be the sequence of regions which corresponds to the Lh.s. factorization of 1"/ in
M. Then

W N ALy, iz, » -+, oy} C {1}
By the construction of 4, we have
(W\UIN{Ti,Tiz, -+ -, Tano)} € {1, Tineor}-
In view of (15),
{Ai Aizy * < o5 Ao} = (B, -+, Zis)} Ui« = o, Tana} U, -+, Tipop}-
Therefore

(W\ ou',) n {Au, AIZ, "t Ail(i)} c {zis(i), Fu, rih(i), Hu}-



66 E. RIPS Isr. J. Math.

This proves (a). To prove (B), we consider the path «;:= p;", which is a p.o.b.p.
of ¥; and a n.o.b.p. of ®;. Applying Proposition 2 with ®, ¥, u replaced by
¥, @, k;, we obtain a factorization k; = xix'ix'] with the properties described in
Proposition 2. In particular, since ®; <¥;, we obtain by (¢') that if « is
non-trivial, then it is on the boundary of ¥;. Considering the sequences of
regions for the L.h.s. factorizations of «; and '/ in M, we conclude that both of
them contain at most one region from W. Therefore W N{P;;, Pi, -, Pigy}
contains at most 2 regions, as required.

Let U = Uges, U(P). Using 3°, 6° and 7°, we obtain

8. Card(W\Uo) =6k =3h°.

Let B C T, be the set of all boundary regions II€ J, (i.e. consists of all
regions IT€ 7, such that bd(II) "bd(M) contains at least one edge). Then,
obviously,

9°, card(B)=|w]|.

10°. Let T€ WU, 1€ J, and d(I',IT) =1. Then [1€ ¥.

Indeed, by the definition of U, we have I' =T'; for some i,j (1=i=k,
1<j < h(i)). By Lemma 6 and Definition 26, a(I';)"'y(T';)'B(;)8(T;) is a
p.o.b.p. of [';. Here a(';) is on the common boundary of ['; and ®; € 7, while
by Proposition 2(h), B(I';) is on the common boundary of I'; and ¥; € 7.
According to Lemma 6(d), if y(I';) is non-trivial then y(I';) = 8(I';-,), where
T_ € £'(®). Then, of course, d(I'y, ;1) =1 and [, € 7. The region I';_, has
common boundary edges with ®; and ¥, ; therefore I';_, € W.

Similarly, if 8(I';) is non-trivial then for I';., we have &(I';) = y([;+1), and
rij+1 EW.

This proves our assertion.

Let [T1€ J,\(W U B) and let ind(IT) = dye, + die; + dze2. Then dy =0 because
I1 is an inner region of M and d, = 1 because I1 € . Since A satisfies D(8) and
D(6; 1), we obtain d, = 7. By 10°, for each I' € 7, such that d(II,I') = 1 we have
I' € U,. Hence:

11°. In M, for each region 1€ T,\(W U B), dw(I1)=7, where dy (II) de-
notes the index of Il in M.

The map M is connected and has h = card(J) holes (i.e. bounded connected
components of compl(M)). We apply to M formula (3.1) from [1], p. 243, with
p =3, q =6. Since X[3—d(v)] =0, we obtain

3(1-h)=3 3 (6— dw (D)

where the sum is taken over all regions IT in M.
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Since Reg(M) = (T:\(W U B) U (W U B)\ U), we can write
26— du (I1)) = 6(1 — k) — 3(6 — dwr (T1))

where in 3, the sum is taken over all regions II€ 7,\(% U &) and in 3, the sum
is taken over all regions I1 € (W U B)\ U.

By 8° and 9°, card((¥ U B)\U)=3h*+|w], hence

36— du(IT)) = 18h°+ 6| w].
On the other hand, in view of 11°, we have
316 — du (I1)) = —card(T . \(W U B)).
We obtain
card(F:\(W U B))=18h*+6h + 6| w|—6.

Therefore
card(T:\ U) = card(T 1\ Uo) = card( T\ (W U B)) + card((W U B)\ Ug)
=21h’+6h +7|w]|—6.

The proposition is proved.

§5. Ordered n-ranked maps

5.1. Conditions (SC;). Given an ordered 2-ranked map, we defined condi-
tion (SC); when this condition was satisfied, we constructed a derived map. We
now extend this idea to arbitrary n.

More precisely, we shall introduce a family of conditions (SC;),0=i=n—1,
where each (SC;) is stronger than (SC;_,) and for any ordered n-ranked map
M=(MA{T," -+, T.}, <) (see Definition 12) satisfying (SC;) we shall construct a
sequence

4)) MO =M MO, M2, - - -, M

where MY is an ordered (n — j)-ranked map.

The inductive definition is as follows:

(1) M satisfies (SCo) if, for any region @ in M, clos(®) is simply-connected.

(2) Assume that (SCi_,) is defined; let # satisfy (SCi-) and let M© =
M MO, MP, - M be the corresponding sequence. MV is an ordered
(n —i +1)-ranked map. We can write

M0 = (MOOATED, TED, -, T4, <),
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where 71V is the set of regions of M“™" of rank j —i +1. Form an ordered
2-ranked map

@ MO = (MO AT, TEP U U T, <)

changing the rank of all regions ® with rank(®) >1 to rank 2. We shall say that
M satisfies (SC;) if (# satisfies (SCi-,) and) the ordered 2-ranked map A“™"
satisfies condition (SC). If this is the case, M is constructed as follows:

(3) J‘{(i) = (M(i), {g—?-zh g.§'+)21 Y g'("i)}, <)
where M@ is the derived map of M“™, IV is given by
IP:={¥|®ETIV), i+l1sjsn

and the order relation “<” on T U TR U - U TV is induced from F¢3" U
-+« U T4V by the mapping &+ @'. Since M is a derived map, it is normalized
by Lemma 12 and regular (see Definitions 6, 12 and 24); int(M"”) = int(M) is
connected; J, corresponds in one-to-one fashion

PP D' PP

with J9; therefore I is non-empty. For @, ¥ in M with 1< rank(®)<
rank(¥) we have ® <W¥. Therefore, according to Definition 12, #* is an
ordered (n — i)-ranked map. The sequence

J“(O) _ M,M"’, . ',M(i_l),./“(i)
is thus constructed.

If ®€Reg(M) and rank(®)>i, we let & denote the region of M®
corresponding to ® under the mapping

(4) (p - q)l [ ((pl)l = q)u = @(2) [ cp(i—l) - ((p(i—i))r — (IJ(”,

For example, let, in Fig. 58, M =(M,{7}, T2, T3, T4}, <) be an ordered
4-ranked map, where J,={d,¥}, 7,={}, F.={A} and P<V<I'<A. M
satisfies (SC;) and the sequence M, MV, MP, M® is as shown in Fig. 58. We
have 7 ={@V, 9P}, FP={TV}, TP ={AY}, TP={?}, TP ={A®}, TP =
{A®}.

5.2. Transversals and projections in ordered n-ranked maps. Let M =
(M, {91, T2, -+, Ja}, <) be an ordered n-ranked map satisfying condition (SC,)
for some i, 0=i <n. Then we have the sequence (1) defined in the previous
section. Let ® € Reg(M), rank(®) > i, and let u be a boundary path of ®“. By
the construction of M, M™ is the derived map of #“~"; we can thus speak of
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Al fe) J(“’ M m

Fig. 58.

the projection prae-n(u ; &™), which is a boundary path of ®“~". We can now
take its projection to ®‘~?, and so on, yntil we obtain a boundary path of ®
which we call the projection of u to ®. Similarly, we define the right and left
projections of u to @, the shadow of u with respect to & and right and left
transversals and projections of a vertex v € bd(®"). More precisely, we have the
following definition.

DerINITION 32. Let & € Reg(M), rank(®)>i, let v €bd(®"). For h =
i,i—1,--,1,0, the left and right projections lpr., (v; ®*), or simply lpr(v; ®*),
and rpry(v;®™), or rpr(v;®*) from v to ®*, and the left and right
transversals LT« (v; ®*) or LT(v; ®*) and RT.(v;®*) or RT(v; ®™) are
defined recursively, as follows:

6) Ipr(v; ®):=v, Ipr(v; P' "):=Ipricv{lpr(v; dP); '),

©) Ipr(v; ®“):=v, 1pr(v; P"""):=rprac-o(rpr(v; &); &),

(7) LT(v;9"):=v, LT(v;®""):=LT(v;®")LTaen(lpr(v; ®"); d™"),
8) RT(v;®"):=v, RT(v;d""):=RT(v;P”)RTicn(rpr(v;d");d"™),

where 1=1=i

Let u be a boundary path of ®“. The left and right projections Ipr.« (u ; ®*),
or simply lpr(u;®™) and rpra(u;®") or rpr(u;®™) of p to ®*, the
projection pr. (p; D) or pr(p ; ®*) of u to ®* and the shadow S (i, P*’) or
S(u ; ®™) of u with respect to ®* are defined recursively, as follows:

©) Ipr(p; ©°):=p, Ipr(p; ¥77):=lprac-n(lpr(n; &); &™),
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(10)  rpr(u; V) :=p, rpr(u;P4Y):=rprac-n(rpr(u; ) d7Y),
(A1) prlu; @)=, prl; @)= pracn(pr(u; 947 40,
S(u; D) consists of the edges and vertices of u and
(12) S(p; ') = S(p; VYU S-ny(pripe ; @) 4 70)
where 1 =1 =i

As an immediate consequence of the definitions we have:

LEMMA 26. Let M be an ordered n-ranked map satisfying condition (SC,) for
some l, 0=1<n. Let ® be a region in M such that rank(d)> .

(a) Lemmas 14 and 15 remain valid when @' is replaced by ®" and ®* is
replaced by ®*.

(b) Let k <1I; let u = .2 be a non-trivial p.o.b.p. of ®°. Parts (a), (b), (c),
(d), (e), (f) of Lemma 7 remain valid when ® is replaced by ®®.

(c) Lemma 18 remains valid when the condition ® € T, is omitted, &' is
replaced by " and ®* is replaced by d™.

5.3. Submaps. Let M =(M,{91, 9>, T.},<) be an ordered n-ranked
map satisfying condition (SC;) for some i, 0 =i = n. Let N be a regular submap
of M such that int(N) is connected. Denote %;:=J; NReg(N). Let m be
maximal such that U. # . The linear order “<” on J,U---UJ, induces a
linear order on U, U---U U, which we again denote by *“<”. Then, by
Definition 12, ¥ = (N, {2, U», - -+, U}, <) is an ordered m-ranked map. The
following definition extends Definition 28.

DeriNiTION 33, k-submaps. Let k = i. Let Q be a submap of M. Wecall Q a
k-submap (of ) it there is a subset ¥ of J;.,U---U J, such that

supp(Q)= U clos(®™).
bEW

LemMAa 27. Letk =i. Let N be a regular k-submap of M such that int(N) is
connected and let m be maximal such that U, = J.. NReg(N)#D.

(a) The ordered m-ranked map N =(N,{U,,--- U.}, <) satisfies condition
(SCi), and N*® is a (k — h)-submap of M™ for h =0,1,+- -, k.

(b) ForanylL h,h =1 =k, aregion ® € Reg(N) such that rank(P) > [, a vertex
v €bd(P") and a boundary path u of ®, we have

LT, (0; ") =LT4(v;9"), RTy(v;P")=RTu(v;d"),
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Ipra(u; @) =Ipra(u; @),  1pra(u; &) = rpra(u; ®*),
pra(p; ) =pra(u; ®*),  Su(u;d")=Su(u;d").
This lemma immediately follows from Lemma 20 and its Corollary.
5.4. A technical lemma.

LemMA 28. Let M =(M,{T1, -+, T.}, <) be an ordered n-ranked map satis-
fying (SC;) for some i, 0=i < n. Let ® be a region in M of rank > i and ®" the
corresponding region in M. Let u be a non-trivial p.o.b.p. of ®°. Assume that
the following are given:

(o) a factorization p = pip, - - - pn, where each y; is non-trivial;

(B) a subset S of the set of paths {u., iz, -, un} such that there is no j,
1=j <h, for which both p; €S and p;.. €S;

(y) a factorization pr(u; ®) = kivk..

Then there exist factorizations

(13) n =6'6,0,0,6"
and
(14) v= ¢1¢2¢3l//

with the following properties:

(a) If 6 is non-trivial then 0, = w, for some j., k =1,2,3.

(b) If 6, is non-trivial then 6, & S and ¢, is a subpath of pr(8:; ®). If 6, is trivial
then ¢, is trivial.

(c) If 6, is non-trivial then 6, € S and for some k,

(o) xod: is a head of pr(8.; D);

(B) Ipr(8’6,; P)xo = k1.
If 0, is trivial then ¢, is trivial.

Fig. 59.
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(d) If 6; is non-trivial, then 6% S, ¢; is a head of pr(6;;®) and
Ipr(0’'6,0;; P) = k1d:1¢.. If 8, is trivial then ¢ is trivial.

(e) If ¢ is non-trivial, then 0; and 0" are non-trivial, ¢;=pr(6;;d) and
pr(6”; @) = ¢..

(f) 6.0, is non-trivial.

(g) If . is trivial then @' is trivial (see Fig. 59).

Proor. If «; is non-trivial, let j be the maximal integer such that
Ipr(pey - - - pj-1; D) is a head of «y; if «, is trivial, let j =1.

Let j' be the minimal integer such that j'=j and «,v is a head of
pr(p: - - - py; D).

For some «' and «"

(15) pr(#,'. ca I-"i’;d)) = ' K"
where
(16) K1 = ]pr(p,l [N I"i—l;q))"’, K= K"rpr(ﬂi'+1 cer ;q))

(see Fig. 60). Define:
{17 0 =iy

(if j = 1, this means that 8’ =o(u)).
We now consider the different possibilities, specifying in each case the
relations that define 6y, 6., 85, 6", ¢, b2, b3, P, Ko.

Case 1. j=j and w&S.
Take 01:=p;, 0::=t(w;), Os:=t(w;), 0":= s " ftn, b1:=v, d2:=t(v),
$a:=t(v), Y:=t(v), ko:=t(v) (see Fig. 61).

4 ¥;

Fig. 60. \
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Fig. 61.

Case 2. j=j' and u; ES.
Take 60::=0(w;), 02:=py, O::=t(;), 0':= w1 " pn, G1:=0(v), 1=,
¢3:=t(y)’ ﬂb::t(”)’ Ko:= K’ (See Fig. 62)~

Case 3. j'=j+1, &S and w;. €S.

Take 0,:= py, 0::= pj1, 05:=t(ij41), 0”:= ez * + pa. Since j is maximal, k' is
a head of Ipr(y;; ®), and since j’ is minimal, " is a tail of pr(u;..; ). Hence
there exists a factorization v = ¢,¢. such that

lpr(01; CD) = K’¢1, pr(02; @) = ¢2K".
Take ¢s:=t(v), Y:=t(v), ko:=0(¢,) (see Fig. 63).

Fig. 62.
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Fig. 63.

Case 4. j'=j+1, ;&S and p;n €S.
Take 6,:=p;, 6::=t(y;), 6::= pjs1, 6”:= pjs2 - - pa There is a factorization
v = ¢1¢; such that

Ipr(6,; @) =k'd1,  pr(0:; D)= dsx”.
Take also ¢::=t(¢1), Yy:=t(v), ko:=0(¢hs) =t(¢1) (see Fig. 64).

Case 5. j/=j+1, y,, €S and wi & S.
Take 6::=o(w;), 62:= pj, 03:= pjs1, 0”:= Wiz -+ + pw. There is a factorization
v = ¢.¢d; such that

lpr(02, (I)) = K’(bz, pr(03, (I)) = ¢3K".
Take also ¢::=0(v), Y:=1t(v), xo:=k' (see Fig. 65).

3" 022 Mjeq 0,=F;

Fig. 64.
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Fig. 65.

Case 6. j’ =j +2, [.ng S, i+1 S S, IJ«j+2E S
Take 6::= pj, 02:= i1, 03:= pjs2, 0":= 3+ -+ pn. There is a factorization
v = ¢i1¢,¢s such that

Ipr(0:; @) = k', Ipr(6:;P) =, pr(6;; D)= k"
Take also ¢:=t(v), xo:=0(¢,) (see Fig. 66).

Case 7. j'Zj+2, ui&S and p;+ & S.
Take 0::=py, 8::=t{g;), 63:= W1, 8":= py.2- - - ps. There is a factorization
v = ¢3¢ such that

Ipr(6:; @) = 'y, pr(0s; P)= s, 1Pr(ye2 - pj; P) =",
Take also &,:=1(¢1), xo:=t(¢:) (see Fig. 67).

Fig. 66.
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Fig. 67.

Case 8. j'zj+2, w, €S and w,, &€ S.
Take 0,:=0(y;), 6::= p;, 01:= i1, 6":= sz - - un. There is a factorization
v = ¢,¢s¢p such that

Ipr(6:; @) = k', pr(0s;P) =5, 1Pr(pyez - - py; P) = hc”.
Take also ¢,:=0(v), ko:=«' (see Fig. 68).

Case 9. j'>j+2, w&S, i« €S and ;& S.
Take 01:=py, 02:= pij+1, 05:= pjsz, 0":= s+ - us. There is a factorization
v = ¢1¢2¢3(Il such that

Ipr(6:;; @)= k', Ipr(0:,P) =2, pr(0s;P)= b5, 1PT(pyy+s- - pyr; P) = yY”.
Take xo:=0(¢.) (see Fig. 69).

Fig. 68.
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Fig. 69.

It is easy to check that these 9 cases exhaust all the possibilities. In each case
we have factorizations u = 6'6,0,0:8" and v = ¢,¢. ¢ that satisfy conditions
(a), (b), (c), (d), (e), (f), (g), and so the lemma is proved.

§6. Paths on the common boundary of regions in M
The following theorem is the central result of the theory.

THEOREM 4. Let M =(M,{T1,--,9.},<) be an ordered n-ranked map
satisfying condition (S) (see 2.4). Let i be some integer, 0 =i < n. Assume that M
satisfies (SC).

Let ® and V¥ be regions in M, of ranks r > i and s > i, respectively. Since M
satisfies (SC\), we can speak of the ordered (n—i)-ranked map M® =
MOATE,, - -, T, <). Consider the regions @ and ¥ in M corresponding
to ® and V. Let u be a non-trivial p.o.b.p. of ®* which is also a n.o.b.p. of V.
Then:

) pr(n; P)E X (@; 2 13""7¢; + e,)
i=1

(see Definition 9) (see Fig. 70).

Moreover, let T be a subpath of pr(p;®), i.e., for some o', 0",
) pr(p; P) = w're".
Then either

3 rEX (q:; 3 13“‘%,)

j=1
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Fig. 70.
or there exists a factorization
(€)) T =T7,012
such that
6) — 9@(«»; %-13**%,.)
=t
and
©6) 6 € $(D;e.)=P(D;5)

(see Fig. 71).

Isr. J. Math.

More precisely, there exist two simple paths n, ' and a boundary path ¢ of ¥

such that

@) n,n'€B1(i), 6 7 nén"’

(see Definitions 8, 9) and n,n’ have the following additional properties :

(A) There exists a factorization v = m1m; such that

(o) t(m) =o0(m2) is a vertex on ., m is a path in S(u;P) and n. is a path in

S(u;¥);



Vol. 41, 1982 SMALL CANCELLATION THEORY 79

Fig. 71.

(B) denoting by u, the head of p such that t(uo) = t(n:), we have
@'ty 7 LT(o(p); @) "o ';
(y) if ©<VY, then n, is trivial; if ¥ <®, then n, is trivial (see Fig. 72).

(B) The vertex t(n) is on the path pr(u; V). If ' is trivial, then, denoting by 75
the (minimal) head of pr(u;¥) such that t(n)=t(r;), we have

(@) HEH (\If; }; % . 13‘“—fe,-) ;
£

Fig. 72.
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(B) 7:~i RT(0(u); ¥) " wom: (see Figs. 72 and 73).
Similarly :

(A') There exists a factorization n' = nin; such that

(o) t(n1) =o0(n2) is a vertex on w, 1 is a path in S(u; D) and 7n; is a path in
S(u; ¥);

(B) denoting by po the tail of p such that ofio) = t(n1), we have

70" ~ NipoRT(H(p); P);

() if ®<V, then n; is trivial; if ¥ <® then 71 is trivial.

(B') The vertex t(n’) is on the path pr(u ; ¥). If »" is trivial then, denoting by 1,
the (minimal) tail of pr(u;¥) such that t(n') = o(7.), we have

(@) € X (V¥;Zi..} 13" ¢);

(B) Ta~im3 L T(t(r); ).

CoROLLARY 1. Let M be an ordered n-ranked map satisfying condition (So)
and condition (SC,) for some i,0=<i <n. Let M =MV {T D, -+, TV}, <) be
the ordered (n —i)-ranked map defined in 5.1. Recall that T}, is the set of
regions of rank k of M©.

Let ®€ J,, r>i, and let v be a non-trivial boundary path of ®°. If
v € ®(Zizr crer) in MY (see Definition 30), then

q)(.l)

Fig. 73.
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pr(v;P)E X (<I>; Y ¢ 13 e+ > Ckei+k)
=1 k=1
Where c= Ekg] Ck.

Proor. By Lemma 1(a), Lemma 15(g) and Lemma 26(a), we may assume
without loss of generality that v is a p.0.b.p. of . By Definition 9, we can write
V =1, * Vm, where each v, is a n.0.b.p. of some region ¥§’ € T4, q(h) >,
and for any k =1,

card{h | 1=h = m, rank. (V) =k} =card{h l l1=h=mqh)=i+h}=c.
By Lemma 7(d) and Lemma 26(b),
pi(v;P)=pr(viv::* U; P)=0102" - - 0
where each i (if non-trivial) is a subpath of pr(z;; ®). By (1),
pr(v.; ) E X (CD; 2 13717 + eq(h)) ,
j=1
and hence, by Lemma 1(b), also
o, EHXH (@, 2 13i+1"'e,- + eq(;.)) .
=1

Since m =c¢ =345 ¢ and 23 €y = Zizi Cilivx, We Obtain

pr(v;®P)=010." 0 EX (fb; > (2 13717¢; + eq(;.)))
h=1 \j=1

c %’(d); > m-13"" e + D, eq(h)) C %(@; Y13 g + Y ckem) .
j=1 h=1 j=1 k=1
The corollary is proved.

COROLLARY 2. Let M be an ordered n-ranked map satisfying condition (S.)
and condition (SC,) for some i, 0 < i < n. Then M? satisfies conditions D(8) and
D(6;1).

PrROOF. Suppose that there is a region ®¥ € {2, with a boundary cycle v
such that ¥ € ®“(6e; + e,) in M. Then, by 5.1, for some k =2, v € (6, + &)
in #®. By Corollary 1,

pr(v;®)EX (<D; E 7-13"" g + 641 + e.-+k) .
i=1
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By Lemma 7(f) and Lemma 26(b), there is a head o of pr(v; ®) which is a
boundary cycle of @, and then

oc %(q); 2 7'13i+1~je,' + 6e[+1 + eH.k) g R (‘D; 2 7'13‘””?; + 6e,'+1 + e.-+k) .
j=1 j=1
This contradicts (So) since ® € ... Therefore there is no such @ in 4, and so
M satisfies D(6; 1).

The other assertion can be proved in similar fashion.

The corollary is proved.

Proor oF THEOREM 4. We proceed by induction on i

Consider the case i =0. Then ®=®%, ¥=¥° u.is on the common
boundary of ®.and ¥, and therefore pr(u ; ) = p = pr(p ; ¥). Since M satisfies
(SCo), clos(IT) is simply-connected for each region II € Reg(M). The path u is
non-trivial, ® is to the left of u and ¥ is to the right of u (see Fig. 74), and so
® #V¥. By assumption, ®E J, and ¥ € J,. Hence, by Definition 9, each
subpath of u belongs to $#(®;e,). Then, by Definition 9,

pr(p; @) =n € X(P;e.).

Let pr(p; ®) = w'rw". Take n:=0(7), 7' :=t(7), T11:=0(1), 0:=1, 7.:=1(7),
£:= 7. By Definition 9, n and n' belong to Br(0). Conditions (4), (5), (6), (7), (A),
(B), (A'), (B') are obviously satisfied (see Fig. 75).

Now let i >0. By 5.1, condition (SC;) implies (SC,) for any ! < i. Therefore, by
induction hypothesis, we have:

Fig. 74. Fig. 75.
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1°. All the assertions of Theorem 4, Corollary 1 and Corollary 2 hold
whenever i is replaced by any I <i.

In particular, for any j <i, we have:

2°. The ordered 2-ranked map

M =(MU),{~7}]+)1, 9’}’22u.7§’2,U~--UT,{’},<)

satisfies conditions D(8) and D(6; 1).

Since M satisfies (SC;.,) for any j <{, it follows from 5.1 that:

3°. MY satisfies condition (SC).

4°. Let0=!=i LetI be aregion in M of rank > [. Let v be a vertex on the
boundary of I'”. Then

1
pr(v;N)E X (r; > 2-13"’e,) .
j=1

We proceed by induction on [ If I =0, there is nothing to prove. Let I >0. If
pr(v; ") is a single vertex, then by the induction hypothesis,

-1 I
pr(v; D) =pr(pr(v; T ;N EH (F > 2-13““’e,) cx (F 3D 2-13”’e,) .
j=1 j=1
Assume, then, that pr(v; '"") is a non-trivial path. In view of 2° and 3°, Lemma
24 gives

pr(v, T ) e (2e,)
in M9V, hence in M. Hence, by 1° and Corollary 1,

=1

-1 {
pr(v; D) =pr(pr(v; I ), N EXH (l" 3 . 2:13' ¢ + 2e,) =¥ (F P> 2-13“’e,) .
=1

5°. Let 0=<I/=i and let I bé a region in M of rank > I. Then clos(I'") is
simply-connected.

Indeed, if [ =0, then 'V =T, and then clos(I') = clos(I"”) is simply-connected
since M satisfies (SCo). If I = 1, then I'” is a region in M, the derived map of
the ordered 2-ranked map ‘™. By 3°, M"™" satisfies (SC) and therefore
clos(T'") is simply-connected.

By assumption, p is a non-trivial path which is a p.o.b.p. of & and a n.o.b.p.
of ¥, In view of 5°, we obtain:

6°. ®# ¥ and p does not contain a boundary cycle of ®. In particular, u is
simple.

Our next goal is to prove the following statement:
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(C) Either v € #(®;Z}.,13'""¢;), or there exists a simple path 7 € Br(i)
connecting a vertex of 7 to a vertex of pr(u ; ¥), having properties (A), (B) and
such that, if =, is the (minimal) head of 7 satisfying t(r,)=o0(n), then
1€ H(D;Z}-.3-13""¢).

Applying Proposition 2 with 4, ®, ¥, ®', ¥ replaced by M, ¢V, ¥,
PP, ¥ we obtain a factorization

® p=pp"n”
and, if u" is non-trivial, a factorization

(9) I-L" = Mafd2 "t fy

with the properties described in Proposition 2.
By Lemma 7(d) and Lemma 26(b), there is a factorization

(10) T=7'7"1"

with the following properties:

7°. If 7' (7", 7"™) is non-trivial, it is a subpath of pr(n’; ®) (of pr(u”; @), of
pr(n"; ®)). Moreover, there are paths «,, k; such that

() pr(p”; @)= r17"k2;

(B) Ipr(n’; P)k: = @'7';

(y) wrpr(n”; ) = 7"w" (see Fig. 76).

8. If u” is trivial then 7" is trivial.

9°. If ' is trivial and 7” is non-trivial, then x, is trivial.

By Proposition 2(c), pr{x’; @ ") € ®“"(2¢,) in M, hence in M, then,
by the induction hypothesis and Corollary 1,

pr(n'; ®) = pr(pr(n’; &' ); ®) € ¥ (cb; S 2-13“’e,~) :
j=i
Similarly,

i
pr(u"; ®)E ¥ ((D; > 2-13"-fe,-) :

i=1

In view of 7°, we have
10°. 7' € #(®; Z-12-13'¢;) and 7" € H(P; Zj_, 213" ¢)).
Similarly, we obtain from Proposition 2(d)
11° pr(n’; ¥)E H(¥; 3i.,14-13'7¢).
Using Proposition 2(h), (i) and (i’) we have:
12°. If p, is not on the common boundary of ®'” and ¥, then
pr(u'pi; V) € #(¥; 2., 5-137¢).



Vol. 41, 1982 SMALL CANCELLATION THEORY 85

Fig. 76.

Comparing (10) and 10° we obtain

13°. If 7" is trivial then 7 = 7'7" € ¥(P; T}, 413" 7¢;)) C H(P; Z;-1 13" ¢;).

In what follows, we assume that 7" is non-trivial. Then, by 8, u” is also
non-trivial and there is a factorization (9).

Let S be the subset of {i,, g2, * -+, pn} defined as follows:

(11) S:={u, l A is on the common boundary of &~ and ¥¢~}.

If & < ¥ then, by Proposition 2(g), (9) is the left-hand-side factorization of "
in M7, By 5°, clos(®“™") is simply-connected and therefore u; and p;., cannot
both be on the boundary of ®“~. Hence either p; € S or ;.. € S. If ¥ < @, then
we reach the same conclusion using Proposition 2(g').

Now apply Lemma 28 with u, v replaced by n”, 7". There result factorizations

(12) 1" = 0"0,6,650"
and
(13) "= ¢1¢z¢3l//

with the properties described in Lemma 28.
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We have

14°. ¢, € #H(D; 3., 13" g).

This is clear if ¢ is trivial. If ¢, is non-trivial, then, in view of Lemma 28(b), 6,
is non-trivial. Then by Lemma 28(a), (b), 6:= u, & S. Then, by (11) and
Proposition 2(h), (h'), we obtain

pr(py; B) € B“(ey)

in (", hence in M“~". Then, by the induction hypothesis and Corollary 1, we
have

(19)  pr(8s;®) = pr(uy; ®) = pr(pr(uy; @) @) € 3¢ (@; 3 137
j=1

and then, by Lemma 28(b), also ¢, € #(®; Zj-,13'¢;), as required.

Similarly, using Lemma 28(d), we obtain:

15°. ¢y € H(D;3-,13'e)).

We have the following possibilities:

(1) ¢: & H(P;Z21137¢;);

(2) ¢.€ H(P;Zi=113'¢;) and ¢ is trivial;

(3) ¢.€ H(P; 2113 '¢;), Y is non-trivial, ' is trivial and rpr(6,; V)&
XV, 25113 e);

4) ¢.€ H(P;ZiZ113' %), ¢ is non-trivial and either ' is non-trivial or
pr(6:; W) € ¥(¥; 22113 ¢).

We consider each of these cases separately.

Case 1. ¢, & ¥H(P;Z(Z113'¢).

In this case ¢, is non-trivial. Hence, by Lemma 28(c), 8, is non-trivial, and
then 6;= u, € S. By (11), u, is on the common boundary of ®“? and ¥¢,

In view of Lemma 28(c) () we have paths ko, ko such that pr(u;; ®) = xod2k0
(see Fig. 77).

Apply the induction hypothesis with i, u, ®', 7, ®" replaced by i—1, u, =
0., Ko, P2, Ko.

Since ¢, & ¥(P;=;-113'¢;), it follows that there is a simple path n €
Br(i —1) connecting a vertex of ¢. to a vertex of pr(u,;¥) and having the
following properties:

16°. Let » be the (minimal) head of ¢, such that t(»;)=o0(n). Then
n € ¥(P;Z511-13' ).

17°. There is a factorization 1 = n;7; such that (see Fig. 78)

(o) t(m:) =o(m.) is a vertex on w,, 7, is a path in S(u,; P) and 7, is a path in
S(p; ¥);
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Fig. 77.

Fig. 78.
(B) denoting by v, the head of u;, such that t(v,) = t(n:), we have
Kkov1 7~ LT(0(p); @) ' womi’;

(y) if @<V, then 7, is trivial; if ¥ <®, then 7, is trivial.
18°. t(n) is a vertex on pr(u,; ¥). If «, is trivial then, letting », denote the
(minimal) head of pr(u,,;¥) such that t(n) = t(v.), we have
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-13“"e,~) and v, = RT(0(ps); ¥) " vom.

N =

i=

We can now prove (C).

Since by Lemma 1(c) Br(i — 1) C Br(i),  is a simple path belonging to Br(i)
and connecting a vertex of ¢,, hence of r (cf. (10) and (13)), to a vertex of
pr(x,; V), hence of pr(u;¥) (cf. (8) and (9)).

Define 7,:=7'¢,»:. Then, by (10), (13) and 16° 7, is a head of 7 such that
t(71) = o(n). By 10° 14° and 16°,

i=1 i
n=1'$¢ € %(CD; 21 3 % 13'7¢; + 3e.-) cx (CD; 21% : 13i+1—iei) .
i= i=

Since # satisfies (So), 7, cannot contain a boundary cycle of ® and therefore 7, is
the minimal head of r such that t(,) = o(n).

By Definitions 20, 27 and 32, the map S(u,,; P) is a submap of S(x;P) and
S(uy; W) is a submap of S(u;¥) because by (8) and (9) w,, is a subpath of u.
Therefore (A(a)) follows from 17°(a). (A(y)) follows from 17°(y). As we know,
0, = w;,. Therefore, by (8), (12) and 17°(B), ©'0’0:v, is a head of u such that
t(p'6'8,vo) = t(vo) = t(m:) and hence

(15) to = 11'6'81v0.

By 7°(B), Lemma 15(c) and Lemma 26(a),

(16) ©'t" 7 LT(o(n); ®)"1'LT(o(n"); P)x:.
By Lemma 28(c) (B),

(17) K1¢1 T LT(O([‘L”); @)'IO'O,LT(O(;L,Z); q’)Ko (see Flg. 79).

(Remember that 0(6'6,)=o(u") and t(6'6,) = 0(6.) = o(y;,).)
By 17°(B),

(18) ko1 7 LT(0(1s); ®) 'womi.
Comparing (16), (17) and (18), we obtain

©'n=w'r'$v1 7 LT(o(n); &) ' LT(o(n"); D)1 v
7 LT(o(p); ®)"' 16" 6 LT(0(ps,); PYkors

v LT(o(p); @) '1'0'01wom " + LT(0(); D) " ponyi’.
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o(,‘u} Q )

rerpd, , ¥)
olp)

Fig. 80.

Thus, (A(B)) also holds.

We now verify (B). By 18°, t(n) is a vertex on pr(u;; ¥), hence on pr(u ; ¥).
Now let ' be trivial. Then, by 9°, «; is trivial, and then, by Lemma 28(g), 6’ is
trivial.

By 18°, », is 2 head of pr(w,;¥) such that t(n)=t(r,); hence the path
r3:=1pr(n’6:; ¥)v, is a head of pr(u ;W) such that t(rs) =t(n) (see Fig. 80).

If 6, is trivial then, by 11° and 18°,

i-1
TE K (‘I’; z 4% 137, +4e,-) - %’(‘P;
= =

1 s
,'15.13 'e,-).

Since 0’ is trivial, it follows from (9) and (12) that p" = gz -+ py = 6,0,050". If
6, is non-trivial then, by Lemma 28(a), 6, = u,, and by Lemma 28(b), 6, =
1€ S. According to (11), p4 is not on the common boundary of &~ and ¥¢ .
Then, by 12° and 18°,
i=1 i
73 = 1pr(p0; W), € %(\p; D 5% 13", +5e.-) C %(\p; 3 % - 13"*fe,-) .
i=1 j=1

We have thus verified (B(a)).
Next, by Lemma 15(d) and Lemma 26(a),

(19) rpr(p'6:; ¥) + RT(o(n); ¥) ' ' 6: RT(0(1); ¥).



90 E. RIPS Isr. J. Math.
On the other hand, by 18°,
(20) v2 ~ RT(o(us,); ¥) ' voma.

Comparing (19) and (20), we obtain
T =1pr(i'6y; W)v, v RT(o(p); ¥) ' 1'6: RT(0(ps,); ¥)v:
+ RT(o(u); W)™ 1’ 01vom2 = RT(0( ); ¥) ™" prom2,

hence (B(B)) is also verified. We have thus proved (C) in Case 1.

Case 2. ¢.€ H(D;ZiZ1137¢;) and ¢ is trivial.
In this case, by (10) and (13), 7 = 7'¢1¢2s7". Then, by 10°, 14° and 15°,

i~1 i
T= T'¢1¢2¢3T"’€ %((b; 2 7'13i_iej + 635) - %(q), z 13Hl~je,‘) N
=1

ji=1
therefore (C) holds.

Case 3. ¢,€ H(P;Z[2113'¢;), ¢ is non-trivial, w’ is trivial and rpr(6,; ¥)
& H(V; 2113 7%¢) (see Fig. 81).

By Definitions 17, 27 and 31, the fact that rpr(68,; ¥) is non-trivial implies that
0, is non-trivial. Then, by Lemma 28(c), 8. = u,, € S. Hence, by (11), 6. = u,, ison
the common boundary of ®“” and ¥“,

The path ;' is a non-trivial p.o.b.p. of ¥~ which is also a n.o.b.p. of ®“".
By Lemma 15(g), Lemma 26(a), (b) and Lemma 7,

i—1)

pr(6z'; W) = pr(6; W)™ = pr(t(6.); W)rpr(6; ¥) ™.

RT
prit(e,), ¥)
rpridy; ¥)
¢ Lr
él(’)

Fig. 81.
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We apply the induction hypothesis with i, ®, ¥, u, ', 7, ®" replaced by i — 1,
¥, ®,0;", pr(t(6.);V), rpr(0:';¥), t(rpr(6:';¥)). Since r1pr(6:';¥)&
H(¥; ;21137 7¢;) it follows that there is a simple path y € Br(i — 1) connecting a
vertex of rpr(6;';¥) to a vertex of pr(6;';P) and having the following
properties:

19°. Let v; be the (minimal) tail of rpr(6;'; ¥) such that o(¥;) = o(x). Then
»nE X(V;Zizii: 13" 7¢).

20°. There is a factorization y = x1x: such that:

(@) t(x:) =0(x2) is a vertex on 8;' = pu}', x: is a path in S(63'; ¥) and y is a
path in S(63"; P);

(B) if v, is the tail of 87" = u7; such that o(vs) = t(x1), then

vs = X1vsRT(0(y,); ¥);
(y) if @<V, then y, is trivial; if ¥ <® then y: is trivial (see Fig. 82).
21°. t(x) is a vertex on pr(85'; ®). If »s is the (minimal) tail of pr(8;'; ®) =
pr(62; ®)' = pr(u,,; @)~ such that o(vs) = t(x), then
i—1
vsE %(q); z % . 13‘_18}:) and ws i Xz-l V4LT(0(#;2); q)).
j=1

Take n:= x~'. We claim that (C) is satisfied.

Fig. 82.
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Indeed, since y EBr(i —1), by Lemma 1(a), (¢}, n €Br(i). Since ¢ is
non-trivial in Case 3, it follows from Lemma 28(e) that 8; is non-trivial and
¢; = pr(6s; P). Then, by 7°(B) and Lemma 28(d),

@'7' P12 = Ipr(p’; )i d1b2s = Ipr(p'; P)lpr(6'6,6,; P)pr(6s; P)
= pr(p,’0'010203; (D)

The vertex o(n)=t(x) is on pr(6:;P), hence on pr(n’'6’6,0,6;;P)=
®'7T'$1¢ds. But @' is trivial in Case 3, and therefore o(n) is a vertex of
7' 125, hence of T =1'd1dd:0r" (cf. (2), (10) and (13)). On the other
hand, t(n)=o(x) is a vertex on 1pr(6,;¥), hence on pr(u;¥)=
pr(u’6'6,0,6,6"u"; ). Since y is a simple path, n = x " is also a simple path.

Since ' is trivial, , is trivial by 9°, and then, by Lemma 28(g), 6’ is trivial.
Then, in view of (8) and (12) we have:

22°. ', is a head of p such that t(u'6;) = 0(6.).

According to 21°, v5" is a head of pr(6;; ®) such that t(vs') = t(x) = o(n). We
have by Lemma 15 and Lemma 26(a)

t(0pr(u'6:; ) = Ipr(t('8:); D) = Ipr(0(62); ®) = o(pr(6:; B)),

and so 7;:=lpr(u'0;; ®)ws' is a head of pr(u;P) such that t(r;) =o(n) (see
Fig. 83).

If @, is trivial then, by Definitions 17, 27 and 32, Ipr(6,; P) is also trivial. If 6, is
non-trivial then, by Lemma 28(a), 6,=u;, and then, in view of (14),
lpr(6,; ®) € #(P; Zj-,13'’¢;). Using 11° and 21°, we obtain

Fig. 83. Fig. 84.
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Since M satisfies (So), 71 cannot contain a boundary cycle of ® and therefore 7, is
the minimal head of 7 such that t(r,) = o(n).

We now check condition (A).

Take 7,:=x3', n2:=x1'. Then, in view of 20°%(a), t(m:) = o(x-) is a vertex on
i, hence on p. Since u;, = 6 is a subpath of u, we have also S(6;'; @) C S(i ; @)
and S(8;'; ¥) C S(u ; V). Therefore 20°(c) implies (A(a)). (A(y)) follows imme-
diately from 20°(y).

Define

(21) o= p'01vi,

In view of 20°(B) and 22°, u. is the head of u such that t(uo) = t(x:) = o(x2) =
t(n:). By Lemma 15 and Lemma 26(a),

Ipr(u'61; @) + LT(o(u ); D)1’ 6, LT(0(us,); D).
In view of 21° and the fact that in case 3 o' is trivial,
7 =Ipr(p'0;; @)vs' + LT(o(p); D) 'p'0:vi' x2 = LT(o(p ); @) ' promy's

so that (A(B)) is also verified.

We must now check condition (B).

The vertex t(n) = o(y) is a vertex of pr(6; ¥), hence of pr(u; ¥). In view of
19° and 22°, 75:=1pr(w’6,; ¥)v3' is a head of pr(u; ¥) such that t(73) = o(x) =
t(n) (see Fig. 84).

It 6, is trivial then by 11° and 19°,

n=1pr(n’ s V)vi' EH (‘I’; 2 4% - 13" e, +4ei) c %’(‘I’; _ 1% . 13”“’@) .

i= i=
Since 8’ is trivial, it follows from (9) and (12) that 6, isa head of " = p 2+ * s
If 6, is non-trivial then, by Lemma 28(a), 6, = u;,. By condition (&) of Lemma 28,
each y; is non-trivial; therefore necessarily j; =1 and then 6, = i,. By Lemma
28(b), 6, = i & S, hence, by (11), u, is not on the common boundary of ®“~
and W', Then, by 12° and 19°,
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i=1 i
73 = 1pr(u'0;; V)vi' € %(\v; ) 53137, +5e,-) c %(qr; 2% : 13”"’e,-> .

This verifies (B(a)).
Now, by Lemma 15 and Lemma 26(a),

tpr(p'6:; ¥) 7 RT(0(n); ¥) ™' ' 6, RT(0(1z5); ).

Then, using 20°(B) and (21), we obtain
T3 =1pr(pn'0; W)v3' + RT(0(w); ¥)'n'0:1v3"' x1' = RT(o(p ); ¥) ™ oy

Thus, (B(B)) is also verified, and we have proved (C) in case 3.

Case 4. ¢, € H(D;ZiZ113'¢;), ¥ is non-trivial and either w’ is non-trivial
or rpr(8,;; ¥) € H(¥; Z;2113'¢;).

By Lemma 28(e), ; and 6” are non-trivial and ¢; = pr{6,; ®). By Lemma
28(f), 6:0; is non-trivial. By Lemma 28(a), 6; = p;, and then, in view of (9) and
(12), 1 <j; < h. By Lemma 28(d), 6; = y,;, S and then, by (11), 6; = u;, is not on
the common boundary of &~ and ¥, Then, by Proposition 2(h) and (h’), we
obtain

23°, If ® <V, then 0; = B(T}, ) for some ', ™ € Lu'w-n(P*V); if ¥ < P, then

= B(II\"™")™" for some Hf; Ve Lha-n(PD),

In order to simplify the notation, we introduce the following abbreviations:

24°.If &<V, then I:=T}, a:=a([{\™), B:=BTE ") =0, v:i=yTL"),
8:=8(I%).

If ¥<®, then II:=1I1,, a:=BIL. ") "' =6;, B:i=a(lL )", vi=8(I )",
&:=y(II¢ V)" (see Fig. 85).

§
x \ﬂ=9’
¢ (i=1) - 1) W"" "
Y
v/
¢<¥

Fig.
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Since 1< j; < h, Proposition 2(h), (h’) yields:

25°. a is on the common boundary of ®“~ and I while B is on the
common boundary of II“® and ¥“°". Furthermore, a = pr(8;;®“™) and
B = pr(6s; ¥¢™).

By the assumption, the regions ¢ and ¥ are of ranks r and s, respectively.
Therefore, by the induction hypothesis,

i—-1

22) pr(a;I)E X (n; > 1377 + e,) ,
j=1

and
i-1

(23) pr(B;I)E X (n; > 13'7¢ + e,) .
j=1

By Lemma 22(a), y € I1°"(e,) and 8 €1 %(e,) in #“ ", hence in M“"". Then,
by the induction hypothesis, Corollary 1 and 4°,

i i
24) pr(y; I e %(l’[; > 13"ie,-) ,. pr(8;IH e %(H; > 13""'e,-) .
j=1 i=1
Suppose that pr(a; ) € #(I1; =2} 13 ¢;). Then, by (23) and (24),
i—1
pria”'y'BS; INE KX (l'[; > 4137 + 26 + e,) .
j=1

But this contradicts (So), because by Lemma 6, Lemma 7(f) and Lemma 26(b)
pr(a'y™'B8;II) contains a boundary cycle of II. Therefore

25) pr(a;INE X (H; i 13‘“’e,-) .
Similarly,
(26) pr(g; I 2 9 (IL; 3, 137%,).

We now apply the induction hypothesis twice. The first application is with
i,®,¥,p0,n0" replaced by i—1, II,®,a”, ofpr(a’;I), pr(a';I),
t(pr(a; IT)) (see Fig. 86). By Lemma 15 and Lemma 26(b),

pr(a™"; II) = pr(a; 1)
Then by (25) and Lemma 1(a),

pr(a”; )& % (11; S 13“’e,-) .

j=1
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Fig. 86.

Therefore there is a simple path & € Br(i — 1) connecting a vertex of pr(a™; II)
to a vertex of pr(a™'; ®) and having the following properties:

26°. Let ; be the (minimal) tail of pr(a™;II) such that o(t,) = o(£;). Then
0 € H(T; 221513 ).

27°. Let «, be the (minimal) tail of pr(a";®) such that o(t;) = t(£). Then
LE H(D;ZiTii-1317¢).

28°. ¢, is a path in S(a*; IT) and t(¢&)) is a vertex both on @' and pr(a™'; ®).
(Indeed, either 1“7V € Lyen(®'™) or M€ Lian(¥' ). In both cases
rank(Il) =i <r =rank(®) and we then apply (A’(y)) of the induction
hypothesis.)

29°. Let «; be the tail of @~ such that o(t;) = t(&,). Then 1, ~;—; 1. LT(o(a); P).

We now apply the induction hypothesis again, with i,®, ¥, u, @', 7, 0" 1€-
placed by i — 1,IL ¥, B, o{pr(B;II)), pr(B;II), t(pr(B;II)) (see Fig. 87).

In view of (26), there is a simple path & € Br(i —1) connecting a vertex of
pr(B;1I) to a vertex of pr(B;¥) and having the following properties:

30°. Let ¢, be the (minimal) head of pr(B;II) such that t(is) = o(£). Then
W€ H(IL;Zi215-13 ;).

31°. Let s be the (minimal) head of pr(B;¥) such that t(is) = t(£2). Then
s € H(V; 221113 7¢).
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32°. & is a path in S(B; II) and t(£,) is a vertex both on 8 and pr(8; ¥). (Here
we are using the fact that rank(II) =i < s = rank(¥).)

33°. Let « be the head of B such that t(i)=t(£). Then
ts~i-1 RT(0(B); ¥) 't

We now construct the path 7.

Let i, be the boundary path of II connecting the vertex t(pr(a™';II))=
rpr(o(a); IT) to the vertex o(pr(B;II)} = lpr(o(B); ) and such that

e RT(o(a); ) 'y ' LT(o(B); IT) (see Fig. 88).

By Lemma 7(d) and Lemma 26(b),
pr(y~"; II) = pr(t(y); Mrpr(y~"; IT) = Ipr(y~"; Mpr(o(y); II).
Therefore, either

pr(y ' II) = pr(t(y); INwopr(o(y); IT)
or
pr(y " IT) =lpr(y~'; M)eg rpr(y ' IN).
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In each of these cases, it follows by (24) that
i—1
@7 WE K (H; S 13“’e,~) .
j=1
Now consider the boundary path ¢ of II such that o(t)=o(t) = o(&),

t(¢) = t(ts) = o(&;) (see Figs. 86 and 87) and ¢ ~¢u1t0ts. In fact, ¢ is obtained by
reducing, if necessary, the path t;i0ts (see Fig. 89). Then by 26°, 30° and (27)

LEX (n; S 2.137¢, + e.») :

j=1

(28)
Let n be the path obtained from £7'u£; by deleting all its closed subpaths (if

there are any) (see Fig. 90).
We can now prove (C).

>

4‘0'-1)

Fig. 89. Fig. 90.
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Indeed, we know that &€EBr(i—1), &€EBr(i—1) and €
H(I1; 2iZ52:13"J¢; + &;). Therefore £7'1£; belongs to Br(i) by Definition 9 and
Lemma 1(a). (In fact, this point actually determined the definition of Br(i).) By
Lemma 2, we have also n € Br(i). By construction, n is a simple path.

In Case 4, ¢ is non-trivial; hence by Lemma 28(e) and 25°,

(29) ¢ = pr(0s; ) = pr(p;,; D) = pr(a; D).
On the other hand, by 25°,
(30) pr(6s; V) = pr(w;,; ¥) = pr(8; V).

In view of (10) and (13), ¢; is a subpath of 7. By the construction of £,
o(n) =1t(£) is a vertex of pr(a; P) = ¢;, hence of 7. By the construction of &,
t(n) = t(£,) is a vertex of pr(B; V), hence of pr(u ; ¥). Thus, n connects a vertex
of 7 to a vertex of pr(u; V).

Using (10), (13), (29) and 27°, we see that the path 7, defined by

(31) Ti:= ’T'¢1¢202—1

is a head of 7 such that t(r,) = t(£,) = o(n). By 10°, 14°, 27° and the assumptions
of Case 4,

il.

i—1
=1 ¢ € 9@(q>; > 4% 13" 7e; + 3e,) C %(cb; 3
j=1

i=1
Since # satisfies (So), 7, cannot contain a boundary cycle of ® and therefore 7, is
the minimal head of 7 such that t(r:) = o(n).

We now verify condition (A), under the assumption that <.

In this case we take n:1:=n, n2:=t(n).

By 23° and 24°, B = 6; = ;.. By (8) and (9), u,, is a subpath of u and then, by
32°, t(p)=o(n)=t(n)=t(£&) is a vertex of u. By 23° and 24°, IV €
Lia-v(®), and therefore clos(I1*™) C supp(S(8; P)) C supp (S(; P)) (see
Fig. 91). By 28°, 32° and the construction of ¢, £7'i£; is in clos(TI*™"), hence it is a
path in S(u ; ), and then n, = 7 is also a path in S(u; @). On the other hand,
n2 =t(n) = t(&) is a vertex of pr(B; ¥), hence of pr(u ; ¥). Then, obviously, 7. is
a (trivial) path in S(u ; ¥). Furthermore, in view of (8), (9), (12) and 33°, the path
Lo defined by

(32) /.Lo:=y.'0'0102¢6

is the head of u such that t(uo) = t(£2) = t(n) = t(n).
By 7° (B), Lemma 15 and Lemma 26(a),
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(33) 0’7" 5 LT(o(p); @) u'LT(o(p"); P)xs.
By Lemma 28(d),
(34) k112 + LT(o(n'); ©)7'6'6:6:LT(0(ps); D).

By Definitions 16, 27 and 32,
35) LT(o(ps); @) = v LT(o(a); D).

By 29°, o(n) =t(&) = o(ts) and by 33°, t(n) = t(£;) = t(1s). Since 7 is a path in
clos(IT*~?),

(36) Gy My
By 29°,
37 2~ LT(o(a); ®)  (see Fig. 92).

Using (13), (32), (33), (34), (35), (36) and (37), we obtain
@'T = @'T'$ipaes 7 LT(0(); @) 'LT(0("); ®Ysprcbe’
7 LT(o(u); @)'1'0'6:6,y LT(0(ax); D)e3"

+ LT(0(); @)™ '0'6:0,06m" e LT(0(er); ®)e5* 7+ LT(0(pa); ) aomi™.
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We have thus verified (A) under the assumption that ® <¥. We now verify
(B) under the same assumption.

We have already shown that t(n) = t(£,) is a vertex of pr(u; ¥). If o’ is trivial
then, by 9°, «, is trivial (remember that we assume that 7" is non-trivial). Then,
by Lemma 28(g), 6' is trivial. Define 7; by

(38) Tyi= rpr(p,'Oloz;‘I’)Ls.
We know that
t(rpr(p "6:6.); ¥) = rpr(t(62); '¥) = rpr(0(65); ¥) = o(ss)

because, by 31°, s is a head of pr(B; ¥) = pr(8;; ¥) (see Fig. 93). Hence 7; is
well-defined. By (8) and (9), u'6:0 is a head of u; therefore 7; is a head of
pr(u ; ¥). By 31°, t(73) = t(16) = t(£;) = t(n). By the assumptions of Case 4, if ' is
trivial, then

i—1
(39) pr(6; V)E X (\I’; > 13‘-’e,) .
j=t
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n {c-1)

oripd, ;¥)

RT

Fig. 93.

If 6, is trivial then, by 11°, (39) and 31°,

l_ i+1-j )
;2 13" } .

)

i—1
73 = 1pr(p’; Wrpr(8; W)is € (w; > 52137 + 4e,.) cx (‘I’;
=

If 6, is non-trivial then, since w" = pip;- - ps = 6,0,0:8", it follows from
Lemma 28(a), (b) that 8, = u, € S. By (11), u, is not on the common boundary of
@ and ¥“ and then, by 12°, (39) and 31°,

7 = 1pr{u’ w; W)rpr(0,; ¥)us € %(‘I’; 2 6% 13", +5e.-)
j=1
co <\P; i 13"“-fe,-> .
“2

In view of (S,), in both cases 75 does not contain a boundary cycle of ¥, and
therefore 5 is the minimal head of pr(u; W) such that t(7;) = t(n). By (32) and
339,

73 = 1pr( 0,02, W)is + RT(o(1); ) '1'6:8:RT(0(B); ¥es

~ RT(o(p); ¥) "' 816566 = RT(0(12); ¥) " pro = RT(0(1); W) om:

because 1, = t(n) is a trivial path.
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Thus, (B) is also verified, under the assumption that ® <.

We now assume that ¥ < ®. Let us verify (A). Take n::=0(n), n.:=1.

By 23° and 24°, « = 6; = w;,; hence, by 28°, t(n:) = o(n) =t(£,) is a vertex of
4., hence of . By 23° and 24°, 17 € Li (¥ V), therefore £7'1£2 is a path in
S(r; W), and then n = 7, is a path in S(u;¥) (see Fig. 94).

On the other hand, by the construction of &, ni = o(n) =1t(£)) is a vertex of
pr(a; ®), hence of pr(u ; @) and then, of course, the (trivial) path »; isin S(u ; ).

Furthermore, in view of (8), (9), (12) and 29°, the path

(40) [-1/0:=’L10’0102L;1

is a head of w such that t(uwe) = o(t:) = t(&) = o(n) = o(n.2).
Using (31), (33), (34), (40) and 29° (all of which remain valid under the
assumption that ¥ < ®), we obtain

@' = &'T' 1oty v LT(o(p); @) u'LT(o("); P)kcsprpatz’
~ LT(o(1); @) '1'8'6,6,LT(0(); D)3’
7 LT(o(n); @) 'p'0'6:05¢5" = LT(0(); D) o

=LT(o(n); ®)'1o0(n) =LT(0(u); ®) "mem:’  (see Fig. 95).

LT ¥ ji-1) @‘H,

L fin “
|
}
|
|

Otet)

118'96
4, o
7 ¢/ ‘

W i
S ¥) //////,./// w'r‘ T ow

kT LT

>

Fig. 94. Fig. 95.
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Thus parts (a) and (B) of (A) are verified. Part (y) follows from the definition
of 7, and 7..

Now consider (B). We already know that t(n) = t(£.) is a vertex of pr(u; ¥). If
@' is trivial then, by 9°, «, is trivial, and by Lemma 28(g), ' is trivial. Then the
path 7, defined by (38) is a head of pr(u;¥) such that t(75) = t(n). Proceeding
exactly as in the case ® <V, we obtain 7; € X (¥; ;- 5-13"'¢;), and then, in
view of (So), 75 is the minimal head of pr(w ; ¥) such that t(7s) = t(n). Proceeding
as in the derivation of (35), we have

RT(o(a); ¥) = vy ' RT(o(B); V).

Then, using (36), (38), (4) and 33° (see Fig. 96) (notice that (36) is valid under the
assumption that ¥ <®), we obtain

73 = 1pr(’6:6:; ¥)is + RT(o(u); ¥) ' '6:0:RT(o(a); W)es
~ RT(o(u); ¥)"'1'0:6,y " RT(0(B); ¥)is + RT(0(u); ¥)'11"6:60:05m
= RT(0(x); ¥)'pam = RT(0(1 ); ¥) ™" trom2.

w{i-l} /

n‘f—')
4

":l 2= % "

Ofut) - &
Y
62 RT
rpr(8,,;¥)
9‘
RT
i ol ¥)
olp) \\__W/’
RT

Fig. 96.
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Thus, (B) is also verified under the assumption that ¥ < &. This completes the
proof of (C) in Case 4. Since Cases 1, 2, 3, 4 exhaust all possibilities, (C) is
proved.

The following statement is proved in similar fashion.

(C) Either 7€ #(®;Z;-,13""¢;), or there is a simple path 7’'€ Br(i)
connecting a vertex of 7 to a vertex of pr(u ; ¥), having properties (A’), (B’) and
such that, if 7, is the (minimal) tail of 7 satisfying o(r;)=o0(n’), then
7. € H(P;Z).,3-137¢).

Using (C) and (C'), we now easily complete the proof of the theorem. Indeed,
if 7& #(P;Z;-,13"'¢) then, by (C) and (C'), 7 = 7171 = 7572 for some 7} and
t5. If 71 is a tail of 7,, then 7{ belongs to #(P;=}-3-13"""7¢); then 7 =
171 € ¥(P; Z;-1 13" Y¢;), contradicting our assumption. Therefore there is a
path @ such that 7 = 1,67, (see Fig. 97).

By (A) and (A’), t(n) and t(n1) are vertices of u. Let & be the subpath of u or
p~' connecting t(n:) to t(n?) (see Fig. 97). By Lemma 15 and Lemma 26(a),

(41)  o'nbne"=w'e"=pr(u;P) v LT(o(u); ®)"'n RT(t(1); D).
Using (A) and (A'), we have

2) @'ty 7 LT(o(r); ) 'moni', 10" v nipdRT(t(w); D).
Comparing (41) and (42), we obtain

43) 0 + mémi

Fig. 97.
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Let ¢ be the boundary path of ¥ connecting t(n) = t(n,) to t(n') =t(n2) and
such that &~im.én5" (see Fig. 98). By (A) and (A’), %, and 75 are paths in
S(u; ¥); hence the path £ indeed exists. We obtain:

=1 1—1

0 + mémi v mmni i = qén'
By (C) and (C'), the paths n, n’ are simple paths and belong to Br(i). Then, by
Definition 9,
0 € P(D;s5)= S (D; e,).
We have 1y, 7, € H(P;Zj.,3- 137" ¢)) C F(D; Zj_13-13"""¢;); hence, by Defini-
tion 9,

=70, € 5 (q); 2 13i+1°ie,- + es) .
=1

Since 7 is an arbitrary subpath of pr(w;®), it follows from Definition 9 that
pr(u; ®) € H(P; 2,13 ¢ +¢,).
This completes the proof of Theorem 4.

§7. Some modifications of Theorem 4

7.1. THEOREM 5. Let M =(M,{T1, -+, J.}, <) be an ordered n-ranked map
satisfying condition (S.). Let k be an integer, 0 = k < n. Assume that if k >0 then
M satisfies condition (SC.). Let N be a regular k-submap such that int(N) is
connected (see Definitions 6 and 33). Let m be the maximal integer such that
T. NReg(N) # . Then, of course,

N =(N,{T:NReg(N), TN Reg(N), -+, T NReg(N)}, <)

is an ordered m-ranked map satisfying (So).

Fig. 98.
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We shall use the subscript # to indicate constructions (projections, transver-
sals, etc.) for which # is the underlying map. For all other constructions the
underlying map is ¥. An exception is made for notation of the type #(I'; ¢) and
A ~;u where the underlying map is always (.

We assume that N satisfies (SC;) for some i,k =i <n.

Let @ be a region of N, of rank r > i, and ¥ a region of M, of rank s > i;
assume that ®# W, Let u be a positively oriented boundary path of &€
Reg(N®) which is also a negatively oriented boundary path of ¥4’ € Reg(M™).
Then

() pr(n; P)E X (d>; > 13 g + es) .

i=1
Moreover, let 7 be a subpath of pr(u; ®), i.e. for some ', ®",
V)] pr(n; P) = w'r0".

Then either

3) TEHX (d>; Z 13”“"e,-)

or there is a factorization

)] T =101,

such that

) T, TEX (cb; -. % . 13"*“fe,-)
=

and

6) 0 E Su(Dse.) = Pu(D;5).

More precisely, there are two simple paths (see Fig. 99) n, n' € Br« (i) and a
boundary path ¢ of ¥ such that

) 0 ~ nén'

where n and 7’ have the following additional properties:

(A) There exists a factorization n = 7,7, such that

(a) t(m1) =o0(n2) is a vertex on u, ), is a path in S(u;¥) and 7, a path in
S(p;¥);



108 E. RIPS Isr. J. Math.

Fig. 99.

(B) if po is the head of u such that t(uo) = t(n,), then
o't v LT(o(w); @) 'pami';

(y) if ® <V, then 7, is trivial; if ¥ < &, then at least one of the paths 1, 7, is
trivial (see Fig. 100).

(A’) There exists a factorization %’ = nin; such that

(o) t(ni)=0(n3) is a vertex on u,7ni is a path in S(u;P) and 7; a path in
S(p;¥);

(B) if u¢ is the tail of p such that o(us) =t(n1), then

20" 7 nipoRT(t(1); P);

(y) if ® <V, then 7} is trivial; if ¥ < ®, then at least one of the paths 51, n;is
trivial.

Proor. We proceed by induction on i — k.

If i — k =0 then, by Lemma 27, N® is a submap of M* = M® and all the
constructions (projections, transversals etc.) in N® =N, ¥®, -+ .  A®) based on
N as underlying map are the same as those based on . In this case Theorem 5§
follows from Theorem 4.
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O(p)

r
L/RTJ(

7, is trivial n, is trivial

Fig. 100.

Now let i —k >0.

Since (SC;) implies (SC;) for any ! <i, the induction hypothesis implies:

1°. All the assertions of Theorem 5 hold whenever i is replaced by any
Lk=l<i

Using the induction hypothesis, we obtain:

2°. Let I’ be a region of N, of rank i, such that """ € L4e-n(®'""). Let o be a
subpath of u which is a boundary path of I'""" (see Fig. 101). Then

i—1
pric; ) E %(F; > 1377 +e,) .
=1

Furthermore, we have

3°. Under the assumptions of 2°, if dye-o(T™", @ ") > 1, then a7 B ™").

Let a:=a(*™"), B:=pI“™"), y:=y([¥"), 6:=86(@T""). By Lemma 6 and
Definition 26, a 'y~ 88 is a boundary cycle of ™", By 2° of Theorem 4, /"
satisfies D(8) and D(6;1). Then, by Lemma 22, 8a 'y €T "(de,) in ¥,
hence in /™", By Lemma 7(d), (f) and Lemma 22(b), we can find a boundary
cycle vi», of ' such that »; is a subpath of pr(8;I') and », is a subpath of
pr(da'y;TI’) (see Fig. 102). By Corollary 1 of Theorem 4,

»n€E %(r; > 4-13‘-"e,.) )

j=1



110 E. RIPS Isr. J. Math.

)
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Y
Fig. 102.

Now, if 8 = o then, by 2°, v, € #(I';2;-113'¢; + ¢,) and

i~1
nEH (I‘; 21 5-13'7¢; +4e + e,) ,
=
contradicting (So). Therefore o # g = 8(I'“™"), as required.

We now prove the following statement:

(C) Either 7 € #(®P;Z;-,13"*"¢;), or there is a simple path 1 €Br.(i),
connecting a vertex of 7 to a vertex of pr«(u;¥), having property (A),
and such that, if 7, is the (minimal) head of = with t(7;)=o0(n), then
€ H(D;3i_,3-13"¢).

Applying Proposition 1 with M, ®, @' replaced by N7, &, ¢, we obtain
a factorization
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(8) p=pn "
and, if u” is non-trivial, a further factorization

(9) M-" = a2 Mg

such that

4°, u'is a head of RT(o(u); D).

5°. w"'is a head of LT(t(w); “ ).

6°. If u” is non-trivial, then

(@) w" is on the boundary of (®“7)' (cf. Definition 23);

(B) the factorization (9) is the Lh.s. factorization of u” in N7,

(y) forany j, 1=j = h, if y; is not on the boundary of ®“~", then y; = B(II{ ™)
for some II{ " € Lha-n(d™).

As in the proof of Theorem 4 we conclude that there is a factorization

(10) r=7't"7t"

with the following properties:

7°. If 7' (7",7") is non-trivial, it is a subpath of pr(u’; ®) (of pr(pn”; ®), of
pr(n"; ®)). Moreover, there are paths «;, k, such that

(@) pr(n"; P) = k17"k2;

(B) Ipr(p'; P)rs = w'7;

(y) xarpr(pn”; @) = 7"w" (see Fig. 76).

8°. If w” is trivial then +” is trivial.
As in the proof of Theorem 4, we obtain

9. '€ H(D; 2,213 7¢) and 7" € H(P; |-, 2-13'7¢)).

Using (10), we have:

10°. If 7" is trivial then 7 = 77" € H(P; Zj-14-137¢;) C H(P; Zj-1 13" ¢)).

In what follows, we assume that 7” is non-trivial; then, by 8°, " is also
non-trivial.

Let S be the subset of {1, 12, - - -, pn} defined as follows:

(11) S:={w | u; is on the boundary of ®“7"}.

Using Lemma 17(a) and 6°(B), we obtain that the paths y;-, and y; cannot both
belong to S. We apply Lemma 28 with M, u, v replaced by N, " and 7". There
result factorizations

(12) [L” = 0’0102030”

and
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(13) 7" = g1
with the properties described in Lemma 28.

As in the proof of Theorem 4, one shows that

11°. ¢, ¢ € H(D; Z)-113 ;).

The only change is that the reference to Proposition 2(h), (h') is replaced by a
reference to 6°(y).

We have the following possibilities:

(1) &€ ¥#(P;221137);

(2) ¢.€ H(P;Zi=113'¢) and ¢ is trivial;

(3) $.€ X (P;=;=1137¢;) and ¢ is non-trivial.

We consider each of these cases separately.

Case 1. ¢, & H(D;Zi2113' ).
In this case ¢. is non-trivial. Hence, by Lemma 28(c), 6, is non-trivial, and
then

(14) 2=}L,-2€ S.

By (11), u; is on the boundary of V. By Lemma 28(c), there are paths ko, kg
for which pr(u,; ®) = kod2k.

We apply the induction hypothesis with i, u, @', 7, ®" replaced by i — 1, uy,, o,
¢, ko Since ¢, & H(P;ZjZ1137 ), it follows that there is a simple path
n € Br. (i — 1), connecting a vertex of ¢, to a vertex of pr. (u,; ¥), and having
the following properties:

12°. Let x: be the (minimal) head of ¢, such that t(x:) =o(n). Then
X1 € H(P; ZiZ11-13¢).

13°. There is a factorization n = 7,7, such that

(o) t{m:) = o(m.)is a vertex of p, = 6,, 7, is a path in S(u;; P) and 7, a path in
S(ps; ¥);

B)if xo is the head of u; such that t(xo)=t(m), then
Kox1 ~i-1 LT(0(pt5); @) "xom1';

(y) if ® <V then ; is trivial; if ¥ < ®, then at least one of the paths 7, n; is
trivial (see Fig. 103).

We can now prove (C).

By (10) and (13), ¢: is a subpath of 7. By (9), u, is a subpath of u, hence
pra(p;,; ¥) is a subpath of pr«(u;¥). By Lemma 1(c), Bru (i —1) C Br.(i).
Therefore, n is a simple path belonging to Br (i) and connecting a vertex of 7
to a vertex of pr«(u;¥). Define

(15) Ty = T'¢1X1.
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RT

L

LT RT#

7, is trivial 7, is trivial
Fig. 103.

Then, by (10), (13) and 12°, 7, is a head of 7 such that t(r:) = o(n). By 9°, 11°
and 12°,

i=1 i
=T 1 EX (<I>; 2; 3% - 13 7g, +3ei) c¥ (cb; 21 % . 13‘”"e,-) .
i= i=

Since # satisfies (So), 71 cannot contain a boundary cycle of ® and therefore 7 is
the minimal head of 7 such that t(r;) = o(n).

(A(a)) and (A(y)) follow from 13°(a) and 13°(y), respectively. We verify
(A(B)). Denote

(16) o= p'0'01x0.

By (8), (12) and 13°, u, is the head of u such that t(uo) = t(1). Using (15), (16),
7°(B), 13°(B), Lemma 28(c), Lemma 15(c) and Lemma 26(a), we conclude as in
the proof of Theorem 4 that

o't 7 LT(o(u); )" pomi’

(see Fig. 104). Thus (A(B)) also holds.
This proves (C) in Case 1.

Case 2. ¢.€ #(P;=7113'¢;) and ¢ is trivial.
In this case we have by (10), (13), 9° and 11°,

i1 f
T=7r"T" =7 P1psT" EHX (<I>; Y 7137 + 6ei) cx (<I>; > 13"”"'e,-) .
; “

j=1
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Thus (C) is true.

Case 3. ¢.€ #(P;2;2113'¢;) and ¢ is non-trivial.

Since ¢ is non-trivial, it follows from Lemma 28(a), (d), (e) that 6; = u, & S
and ¢; = pr(u;; ®). By (11) and 6°, there is a region [1°7” € Ly«-n(P“™) such
that w;, = B(IT*"V). Then, by Definitions 19, 26, 27 and 32:

14°. ¢ =pr(B(I1™"); @) = pr(a(I1“~"); D).

Denote

17 w=a@l?), B=pEI'Y), yi=y@'®), &=5(1").

By Theorem 4,
i—1

(18) pria I E X (l'[; > 137e, + e,)
i=1

where r = rank(®). Then, in view of (S,), the path pr(a'; IT) = pr(a; II)™' does
not contain a boundary cycle of II. By Lemma 7(d), (f) and Lemma 26(b):

15°. There is a p.o.b. cycle of II of the form pr(a ;)" w,w,ws, where

(o) the path wi(w,, ws), if non-trivial, is a subpath of pr(y~*; IT) (of pr(8; I1), of
pr(s;ID);

(B) if y(8) is trivial, then w:(w;) is trivial (see Fig. 105).

RT L
)
LT
“s
i {i-1)
a MY
b g
RT <) ff
Y
Q LT R7:«
Q’M, d) (i)

Fig. 104. Fig. 105.
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By Lemma 22(a), 15° and Theorem 4,
(19) w1, 0, € H (n; > 13‘"’e,-) .

j=1

Applying 2° to I and B = u,, in place of I'"" and o, and using 15°(at), we
obtain w, € #(I1;Z;Z} 13'7¢; + ¢,) and therefore

i—1
(20) w1ww3 E H (H; 2 3‘131_ie,- +2€,~ + e,) .

i=1
Since pr(a;Il) "' ww.w; is a p.o.b.c. of II, it follows from (20) and (S,) that
pr(a; )" & #(1; 2,413 '¢;). Hence

i—1
(1) pr(a; I E X (n; > 13"-"e,-) :
j=t
On the other hand, in view of (18) and (19),
(22) & H (H; 2 13‘"”e,~) :
j=1

We apply Theorem 4, with i, ®, ¥, u, »', 7, 0" replaced by i —1,IL,®, a7,
o(pr(a'; D), pr(a"; 1), t(pr(a'; II)). In view of (21), we conclude that there is
a simple path £ € Br. (i — 1), connecting a vertex of pr(a';II) to a vertex of
pr(a”'; ®) and having the following properties:

16°. & is a path in S(a"; IT) and t(£,) is a vertex on the common boundary of
® and P4V,

17°. Let t,(15, t3) be the (minimal) tail of pr(a*; II) (of pr(a; ®), of a ') such
that o(t:) = o(£:) (0(u2) = t(£1), 0(ts) = 4£,)). Then

(@) uw€ HALZTI3-13¢);

(B) . € H(P;=;213-13"¢));

(¥) t2~i-1t:LT(o(a); P) (see Fig. 106).

By (22), w, is non-trivial and then, by 15%a), w, is a subpath of pr(B;II).
Hence there exist paths «’, k" such that

pr(B;II) = k' wk".

We now apply the induction hypothesis with i, ®, ¥, u, ', 7, »” replaced by
i—1ILY¥, B «', 0, «". In view of (22), we see that there is a simple path
& EBru (i — 1), connecting a vertex of w; to a vertex of pru(8;¥) and having
the following properties:

18°. &, is a path in S(B;II) and t(&;) is a common vertex of B and pr« (8;V¥).
(Here we are using (A(y)) and the fact that rank(I) = i < s = rank(¥).)
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19°. Let «s be the (minimal) head of pr(B;II) such that t(ts) = 0(£;). Then
€ ¥(I1;3]214-13'¢) (see Fig. 107).
Let 7 be the path obtained from £7'v,w;¢.€; by deleting all its closed subpaths
(if there are any). (See Fig. 108.)

We can now prove (C).

Indeed, by (19), 17°(a) and 19°, v,w:e. € X (I1; Z;212:13'¢; + &.). Since &, and
& belong to Bre(i —1), it follows from Lemma 1(a) and Definition 9 that
&' 11010€; € Bry (i) and then, by Lemma 2, € Br. (i) (recall that N satisfies

SC)).

?(1'-0

nﬁ-v)

Fig. 108.
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By (10) and (13), ¢, is a subpath of = and by (8) and (9), w;,=6:=pB is a
subpath of u ; thus pr« (8; V) is a subpath of pr.«(u; ¥). By the construction of
&, t(£&) is a vertex of pr(a; ®). By 14°, pr(a; ®) = ¢s. By the construction of &,
t(£2) is a vertex of pr(B8; ¥). We have o(n) = t(£) and t(n) = t(£,). Therefore, n
connects a vertex of = to a vertex of pr« (i ;¥). By construction, 7 is a simple
path.

Using (10), (13), 14° and 17°, we see that the path 7, defined by

(23) T = ‘T'¢1¢2L ;1

is a head of 7 such that t(7,) = o(t2) = t(£1) = o(n). By 9°, 11°, 17°(B) and the
assumption of Case 3, we have

i1 i
T=1'd1¢u:' € %(cp; > 4% “13"71g; + 3&) c %<<D; 2% ' 13““’e,~) :
=1 =

Since M satisfies (S,), 7; cannot contain a boundary cycle of ® and therefore r, is
the minimal head of 7 such that t(r;) = o(n).

We now show that condition (A) is satisfied.

Take n,:=n, n2:=1t(n). Then, by 18°, t(n:) = o(n2) = t(n) = t(£,) is a vertex of
B, hence of u. By 16°, £, 'is a path in S(a; IT) and, by 18°, &, is a path in S(B;IT).
By 15°, 17° and 19°, vwiu is a boundary path of II. Therefore, £7'1wit.¢; is
contained in clos(II*~"); then 7 is also contained in clos(IT""). By Definitions
20, 27 and 32, clos(I1*™) C supp(S(B; ®)) C supp(S(u; ®)) and so n =1, is a
path in S{u ; ). By 18°, the (trivial) path . = t(n) = t(£,) is a vertex of pr(B; V),
hence of pr(u; ¥). Then, of course, %, is a path in S(u; P). We have verified
(A(a)).

Let s be the head of B = 6; = y,, such that t(ts) = t(n) = t(n,) = t(£&,) (see Fig.
107). In view of (8) and (12), the path u, defined by

(24) Mo = “'0,0102(5

is the head of p such that t(uo) = t(ms).

Using 7°(B), Lemma 28(d), 17°(y), (23), (24), Lemma 15, Lemma 26 and
reasoning exactly as in the proof of Theorem 4, we obtain
o'm~; LT(o(r); @) omi’ (see Fig. 109). We have thus verified (A(B)). (A(y)) is
also satisfied, as m, = t(n) is trivial.

This proves (C) in Case 3. Since Cases 1, 2, 3 exhaust all possibilities, (C) is
proved in its entirety.

Similarly, one can prove:

(C') Either 1 € #(®;Zj-,13"""¢), or there is a simple path 0’ € Br. (i),
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q,(i-ll

n(i-i)

Ir 6,

N

olp*)

LT oty

LT

Fig. 109.

connecting a vertex of 7 to a vertex of pr« (i ; ¥), having property (A’) and such
that, if 7, is the (minimal) tail of 7 satisfying o(r.) = o(n’), then

EH (CD; 21 % . 13““"e,) .
=

We can now deduce the remaining assertions of Theorem 5 from (C) and (C').
As in the proof of Theorem 4, assuming that 7& #(®; 2}, 13" 7¢;), we see that,
for some subpath 0 of 7, T = 7,67.. Next, letting & denote the path obtained by
reducing po'upe™ and noting (A(B)) and (A’(B)), we obtain 8 ~;n:&mi" (see
Fig. 97). Now, by (A(a)) and (A'(a)), the paths 1, and 75 are in S(u ; ¥); hence
we conclude that there is a boundary path ¢ of ¥ such that &~;7.én2" (see Fig.
98). Then

0 mémi” 7 mmani ni" =g

Since 7, ' are simple paths belonging to Br. (i), it follows from Definition 9 that
0E Py (q); S) = Su (q); e,).
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In view of (5) and Definition 9, we have
T = 1'107'2 (S j_a ((I); E 13i+1_ie, + e,) .
j=1

We have shown that, if 7 is an arbitrary subpath of pr(u;®), then either
TEH(P;Zi_,13""7) or 7 € $4(P; 2,13 ¢; + ¢,). Hence, by Definition 9,

pr(n; P)EH (CD; > 137 g; + e,) .
9

This completes the proof of the theorem.
We need also the case when rank(¥) = i. This case is much simpler than the
case when rank(¥)>i.

THEOREM 6. Under the conditions of Theorem S, let us assume that k <
rank(¥) =s < i. Then

pr(n; P)E ¥ (<D; 2 13‘”"e,-) .
j=1

PrOOF. We proceed by induction on i — k.

If i —k =0, the statement of the theorem is vacuous, so we assume that
i—k>0.

1°. Let I' be a region of A of rank i such that I''"" € Zre-»(®" ). Let o be a
subpath of p which is a boundary path of I'“"". Then pr(o;T)E
RS-, 13 7e)).

Indeed, as a subpath of u, o is a n.o.b.p. of ¥¢ . If rank(¥) = s = i — 1 then, by
the induction hypothesis,

i—1 i
pr(a;T)E ¥ (r; S 13*-fe,-) cx (r; > 13f-fej) .
j=1 ji=1
If s =i then, using Theorem 5, we obtain
i—1 i
pric;D)e X (F; > 1377 + e,~) = %’(I‘; > 13“"ej) ,
=1 i=1

as required.

Now we have:

2°. Under the conditions of 1°, o # B(I'"™").

Let a:=a(T¢P), B:=BI“Y), y:=y([¥Y), §:=8([T¢"). Reasoning as in 3°
of Theorem 5, we can find a boundary cycle v,v; of I" such that », is a subpath of
pr(B;T) and v, is a subpath of pr(day~";T).
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If o =8=p({""), then, by 1°, € (T'; Z;-,13''¢).
If dyoo(T¢9,®0“Y)>1 then, as in 3° of Theorem 5, we obtain » €
#([;Z;-,4-13'7¢;) and then

nv, € %(F; 2 5'13i_je,-) )
i=

contradicting (So). If dye-n(T¥,®"P)=1 then, by Lemma 22(a) (b) and
Theorem 4 we obtain », € #('; =i} 3:13'7¢; + 2¢, + ¢,) and then

i~1
= %(F; Z 4:13'7¢; +3e, + e,) ,
b=
also contradicting (So). Thus, o # B(I''™"), as required.

We now apply Proposition 1 to the path u, with M, ®, &' replaced by N7,
@“"P and ®“. There results a factorization u = u'u”n" and, if u” is non-trivial,
a further factorization w” = g2+ - - wy such that

3°. u’ is a head of RT(o(u); ‘™).

4°. p" ' is a head of LT(t(u); ®“ ).

5°. If " is non-trivial then

(a) p” is on the boundary of (®“);

(B) the factorization w” = p,p, - - - s is the Lh.s. factorization of w” in N¢77;

(y) for any j, 1 =j =< h, if y, is not on the boundary of ®“ ", then g, = g(I1{ V)
for some II{ " € Lhon(P7).

Comparing 5°(y) with 2°, we obtain

6°. If u” is non-trivial, it is on the boundary of ®“7".

Let 7 be a subpath of pr(u; ®). As in the proof of Theorems 4, 5, there is a
factorization 7 = 7'7"7" with the following properties:

7°. 7'(r", ") is either trivial or a subpath of pr(n’'; ®) (of pr(u”;®), of
pr(un"; @)).

8°. If p" is trivial then 7" is trivial.

As in the proof of Theorems 4, 5, we have:

. v, " € H(P; 2., 213 ¢;).

If 7" is trivial, then 7 = 7'7" € X(®; Z;-,4-13 7¢;) C #(P; X;-, 13" ¢;). If 7"
is non-trivial then, by 8°, u" is also non-trivial. Then, by 6°, u" is a p.o.b.p. of
@“" which is also a n.o.b.p. of ¥§.

If rank(¥)=s=i—1 then, by the induction hypothesis, pr(u";®)€E
#H(®; 22113 7¢;) and then, by 7°, we have also

i=1 i
T"EX (CI); > 13"’e,) cx (d); Y 13"‘"e,-) .
=1

=1
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If rank(¥)=s =1i then, by Theorem 5,

i—=1 i
T"EH (Cb; 2 137 + ei> = (d>; 2 13"’e,~) .

j=1 j=1

Then, by 9°,

i i
r=1r""EX (cp; S 5-13"-"e,.) ¥4 (cp; S 13“‘-"e,.) .
ji=1 j=t
We have shown that any subpath of pr(u ; ®) belongs to #(®; ;-,13'*'¢;). In
particular,

pr(p;P)E X (fb; 2 13‘““e,~) .
j=1

The theorem is proved.

7.2. In this section we consider a somewhat different situation than in
Theorem 4. Instead of looking at a path on the common boundary of two regions
in M, we consider a boundary path u of a region in M which belongs to a
special class of paths which we now define.

DEFINITION 34. The sets of paths §'(c). Let i =1 and ¢ = 3z, ce;. We say
that a path pu in M belongs to 9'(c) if and only if given:

(o) a factorization p = pipopts;

(B) simple paths o, 7 € Br(i — 1);

(y) a boundary path »; of a region ® in M, of rank i, such that

(®) m2~:i10 'vi7 (see Fig. 110)
we have the following:

(1) » does not contain a boundary cycle of ®;

d'r

K ¥ bs

M

Fig. 110.
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(2) if v, is a boundary path of ® such that »,v, is a boundary cycle of ® then
v & H(D; c).

THEOREM 7. Let M =M, {T,,---,9.},<) be an ordered n-ranked map
satisfying condition (S;) and condition (SC;) for some i,0=i<n. Let ® be a
region in M, of rank r > i, and ®® the corresponding region in M. Let p be a
p.o.b.p. of ® such that

i h—-1
Q) pLeE N9 (z 5-13" ¢ +4e,.) .

h=1 ji=1

Assume, given a factorization
2 pr(p; @) = 0'r0",

then either
3) TEX (cp; 3 13‘“—"e,.)
j=1

or there exist two simple paths v, n' € Bi(i) in S(u ; @), each connecting a vertex of
T to a vertex of u, with the following properties (see Fig. 111):

t(p
.————_\

RT
[T
¢

LT

o)
Fig. 111.
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(@) Let 7, be the minimal head of 7 such that t(r;))=o0(n). Then
T € H(P;Zi.,3-137¢).

(a") Let 7, be the minimal tail of r such that o(r)=o0(n'). Then
1, € #H(P; Zj_15- 13" ¢;).

(b) There is a head wpo of u, such that t(uo) =t(n), for which w'ri~;
LT(o(x); D) 'pon ™.

(b") There is a tail po of w, such that o{uo) =t(n'), for which

0" 7 7' poRT(H(u); P).

(€) T = 71,07, for some subpath 0 of t. Furthermore, for some subpath & of u or
p~', connecting t(n) to t(n'),

6 + nén'.

COoROLLARY. Under the assumptions of Theorem 7, assume in addition that
i € 9’ (Ziz1 cie;) for some ¢; =0, and that, for some boundary path w of ®, Twisa
b.c. of ®. Then either (3) holds or

) wEH (<I>; > e —’Z 13"“‘"e,-) )

j=1

Proor. Let us assume that neither (3) nor (4) is true. Then, by (a) and (a'),

o€ X (CI); 2 c;e,-) .
izl
By Lemma 1(a), (c), " and n'~" belong to Br(i) C Br(r —1). Since i =r — 1, we
have also £ ~,_; 7 '6n’ and then, by Definition 34, any path in M, that contains £
or ¢! as a subpath, cannot belong to 4’ (2;z: ;). In view of (c), this contradicts
our assumption. (See Fig. 112.)

ProOF OF THEOREM 7. We proceed by induction on i.
If i =0, then u =pr(u;P) = w'rw” (see Fig. 113). Take n:=o0(r), n':=t(7).
Then

nn=0(r), 0=1, =t1), p=o', po=0", £=0

and then conditions (a), (a'), (b), (b'), (c) are obviously satisfied.

Assume now that i >0.

We begin with the following statement.

1°. Let I be a region in M, of rank i, such that ™" € Lfe-o(D“ ") with k >1.
Let o be a boundary path of I'*~ which is a subpath of . Then o # (I ™).
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Fig. 112. Fig. 113.

Indeed, as in 3° of Theorem 5, we can find a boundary cycle », v, of I such that
v, is a subpath of pr(B(I'“"");T) and v, € H(['; Z;-,4-13'7¢;).

By our assumption, u € 9'(ZjZ} 5:13'’¢; + 4¢,), therefore, by Definition 34, o
also belongs to ¥'(Zj215:13'7¢; + 4e:). If o = B(I''™"), then applying the induc-
tion hypothesis and the corollary of Theorem 7, we obtain that either v, €
H(; 2213 7¢) or v, & H(';}-,4:13'¢;). The second statement is impossible
and the first statement implies

i—-1
v €KX (r; D 5-13 ¢, +4e,-)
i=1

contradicting (So). Therefore, o # B(I'*™"), as required.

The rest of the proof is completely similar to the proof of Theorem 5.

We prove the following statement:

(C) Either 7 € #(®; =;., 13" ¢;) or there exists a simple path n €Br(i) in
S(u ; ) connecting a vertex of T to a vertex of u and having properties (a), (b).

Applying Proposition 1 with M, ®, @' replaced by M“™, & and ®“, we
obtain a factorization

) p=ppp”
and, if p" is non-trivial, a further factorization
(6) B = e e

such that
2°. u' is a head of RT(o(u); ).
3°. u™ ' is a head of LT(t(w); ®™").
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4°. If p" is non-trivial then

() " is on the boundary of (9“7)';

(B) the factorization (6) is the Lh.s. factorization of u” in M“™?;

(y) forany j,1=j = h, if u; is not on the boundary of ®"~", then u; = B(II{' ™)
for some II{ " € Lyu-n(®“ ™).

As in the proof of Theorems 4, 5 we conclude that there is a factorization

(7) T = T’T"T’"

with the following properties:
5°. If 7'(7", ") is non-trivial, it is a subpath of pr(u’; @) (of pr(n"; ®), of

",

pr(u”; ®)). Moreover, there are paths «,, x; such that

(@) pr(n"; ¢) = Ka7"K2;

(B) lpr(p"; P)i = w'7';

(v) w2rpr(p”; @)= t"w" (see Fig. 76).

6°. If w” is trivial then 7" is trivial.

As in the proof of Theorems 4, 5 we obtain

7. v € H(D;Zi.,2:137¢) and " € H(D; =}, 2-13 7¢)).

Using (7), we have

8. If 7" is trivial then 7 = 77" € H(P; Zj-14:13'7¢;) C H(D; -, 13" 7¢)).

In what follows, we assume that 7” is non-trivial; then, by 6°, " is also
non-trivial,

Let S be the subset of {1, g2, - -+, un} defined as follows:

8 S:={u; | i; is on the boundary of ®“~"}.

Using Lemma 17(a) and 4°(B), we obtain that the paths u;-;, u; cannot both
belong to S. We apply Lemma 28 with u, v replaced by u”, 7". There result
factorizations

©) pn"=0'6,0.0,0"
and
(10 7" = P12y

with the properties described in Lemma 28.
As in the proof of Theorems 4, 5 one shows that
. ¢y, P € H(D;]-113¢).
Here we use the reference to 4°(y).
We have the following possibilities:
(1) ¢ & H(P;22113"e);
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() ¢.€ H(P; 22113 7¢)) and ¢ is trivial;
(3) . € ¥ (P;=;Z113'7¢;) and ¢ is non-trivial.
We consider each of these cases separately.

Case 1. ¢, & H(P;Zi113 7).
In this case ¢, is non-trivial. Hence, by Lemma 28(c), 8, is non-trivial, and
then

an .= p, €S.

By (8), w;, is on the boundary of ®“~”. By Lemma 28(c), there are paths ko,
for which pr(uy,; ®) = ked:ko (see Fig. 114).

We apply the induction hypothesis with i, u, ', 7, ®" replaced by i—1,
iz Koy &2, K§. Since ¢, & H(P; ZiZ1 13'¢)), it follows that there is a simple path
1 € Br(i — 1) in S(w,,; P), connecting a vertex of ¢, to a vertex of u;, and having
the following properties:

"

Fig. 114. Fig. 115.
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10°. Let x: be the minimal head of ¢, such that t(y:) = o(n). Then
i—1 1 o
X1 exX (q); 2 5 . 13"]e,‘) .
j=1
11°. For some head xo of p; such that t(x.) = t(n),
Kox1 ~ LT(o(m); ®)'xon™'  (see Fig. 115).

We now prove (C).

By (7) and (10), ¢, is a subpath of 7. By (5) and (6), w; is a subpath of u. By
Lemma 1(c), Br(i —1)CBr(i). Therefore, n is a simple path in S{u;?P)
belonging to Br(i) and connecting a vertex of r to a vertex of u. Define
(12) T:=7'dixs.

Then by (7), (10) and 10°, 7, is a head of = such that t(7;) = o(n). By 7°, 9° and
10°,

i1 i
n=17dx1 € %’((I); Z 3%- 13" ¢ +3ei) c %(CIJ; 21 % . 13‘“”4) .
1= 1=

Since A satisfies (So), 71 cannot contain a boundary cycle of ¢ and therefore 7, is
the minimal head of = such that t(r,) = o(n). We have verified (a). Take

(13) o= pr'0'0:x0.
By (5), (9) and 11°, u,is a head of » such that t(uq) = o(n). We have the situation
in Fig. 104.

Using 5°(B), Lemma 15 and Lemma 26, we obtain
(14) o't" + LT(o(r); @) ' LT(o(u"); P)x..
Lemma 28(c) gives
(15) K11 7 LT(o(p"); D)™ 6'6: LT(0(1ss); P)xco.

Using (12), (13), (14), (15) and 11°, we obtain
@'t ~LT(o(p); @) "o .
We have verified (b) too. This completes the proof of (C) in Case 1.
Case 2. ¢,€ #(®;2iZ1137¢;) and ¢ is trivial.
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In this case, by (7) and (10), 7 = 7'¢d:d2¢s7". Then, by 7° and 9°,

i—1 i
T= T,¢1¢2¢3T’"E %(q’; 2 7'13i—iej + 66,‘) g %(q); 2 13i+l_ie,)
=

j=1

and therefore (C) is true.

Case 3. ¢,€ H(P;Z2113'¢;) and ¢ is non-trivial.

Since ¢ is non-trivial, it follows from Lemma 28 (a), (d), (c) that 6:= u, & S
and ¢; = pr(uy; ®). By (8) and 4°(y), there is a region I1Y " € Liw-n(P“ ") such
that

(16) s =y, = BIT).
Denote
17) a:=a(l'?), B:=p0I"), y:=yI"), &=8I1"").

By Definitions 19, 26, 27 and 32,

12°. ¢; =pr(B; P) = pr(a; D).
By Theorem 4,

i—-1
(18) pria ;IDEH (II; > 137g, + e.)
i=

where r = rank(®). Then, in view of (S;), the path pr(a™";II) = pr(a; II)"' does
not contain a boundary cycle of I1. By Lemma 7(d), (f) and Lemma 26:

13°. There is a p.o.b.c. of I of the form pr(a ;) w,w,ws, where

(o) the path w;(w;, ws), if non-trivial, is a subpath of pr(y™; IT) (of pr(8; IT), of
pr(8; ID);

(B) if y(8) is trivial, then w:(ws) is trivial (see Fig. 116).

Applying the induction hypothesis and the Corollary, with i, r, @, u, 7, o,
replaced by i —1, i, I, B =, @;, wspr(a';Mw,, we see that either w,E
HK(I1; 32113 ¢;) or

(19) w0spr(a~; Mo, & %(n; Z 4-13“’e,) .

In view of (So), if w, € #(I1; ;21 13'¢;), then (19) also holds. Thus, (19) holds in
each case. By Lemma 22(a), 13° and Theorem 4,

i
(20) w1, W3 € 4 (H; z 131—131) .
=1

Comparing (19) and (20), we obtain pr(a ~';II) & #(I1; Z-,2-13'¢;). Then, of
course,
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RT
8
1T
é QHI n“") o wy
o =
1 w) p 93
w,
RT
¥
LT ¢{,‘)
Fig. 116.
i-1 o
@1) pr(a~; TI) & 9 (n; S 13"’e,~) :
=

On the other hand, by (18) and (20),

i—1
w;pr(a " w, € X (H; > 313 7e; +2¢, + e,) ,

i=1

and then, in view of (So), w. & ¥(I1; ;-1 4-13'¢;); hence

@) 0 € % (n; > 13f-"e,.) .

j=1

1

We apply Theorem 4, with i,®, ¥, u, »’, 7', " replaced by i —1,II,®,a7,
o(pr(a;II)), pr(a™;I0), t(pr(a';I)) (see Fig. 106). In view of (21), we
conclude that there is a simple path & € Br(i —1), connecting a vertex of
pr(a”;II) to a vertex of pr(a~'; ®) and having the following properties:

13°. & is a path in S(a™'; IT) and t(£,) is a vertex on the common boundary of
® and ®7.

14°. Let uy(ts, t3) be the (minimal) tail of pr(a~'; IT) (of pr(a~"; ®), of & ) such
that o(t1) = o(&1) (0(12) = t(£1), 0(es) = t(£1)). Then

(@) uwE H(T;ZiZ13-13);

B) wE X(I;=i213-13'¢);

() 2~i-16LT(o(a); @).

By (22), w; is non-trivial and then, by 13°(a), . is a subpath of pr(B;II).
Hence there exist paths k', k" such that pr(B8;II) = x'w.k".
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We now apply the induction hypothesis with i ®, 4, »', 7, " replaced by
i—1,I1 B, k', w:, k" (see Fig. 117). Here we use the fact that, by (5) and (9),
B =, is a subpath of w; hence, by (1),

i-1 h-1
Be N Y (21 5-13"7¢; +4e;.) .
h=1 i=

In view of (22), there is a simple path & € Br(i — 1) in S(8;II) connecting a
vertex of w, to a vertex of B and such that, if ¢, is the (minimal) head of w, for
which of£;) = o(ws) then

23) LEX (II; % -13‘-fei) .
j=1

Let 1 be the path obtained from &7 0,u.¢; by deleting all its closed subpaths
(if there are any).

We can now prove (C).

Indeed, by (20), (23) and 14%(a),

i—1
hwll.‘E %(H; z 2'13i_iej + e.-) .
=1

Since £, and £, belong to Br(i — 1), it follows from Lemma 1(a) and Definition 9
that £1'1,1t.é; € Br(i) and then, since # satisfies (SCo), by Lemma 2, we obtain
1 €Br(i). By (7) and (10), ¢; is a subpath of T and by (5) and (6), u;,= B is a
subpath of u. By the construction of &;,t(£,) is a vertex of pr(a;®). By 12°
pr(a;®)= ¢s. By the construction of &, t(£) is a vertex of B. We have
o(n)=1t(¢&). Therefore, n connects a vertex of 7 to a vertex of u. By
construction, 7 is a simple path. Clearly, n is in S(u; ).

)

pti-" -y

Fig. 117.
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Using (7), (10), 12° and 14°, we see that the path 7, defined by
(24) T1:= T'¢1¢2L;l

is a head of 7 such that t(r,) = o(i;) = t(£&) = o(n). By 7°, 9°, 14°(B) and the
assumption of Case 3, we have

i—1 i
= %(cb; > 4% 13'e, + 3ei) co (cb; Z% : 13"“-"e,.) .
i= i=

Since # satisfies (So), 71 cannot contain a boundary cycle of ® and therefore 7, is
the minimal head of 7 such that t(r;) = o(n). We have verified (a).

Let «s be the head of 8 such that t(ss) = t(£&;) = t(n) (see Fig. 117). In view of
(5) and (9), the path o defined by

(25) /J/o:=l.l4,010102b5

is a head of u such that t(uo) = tis) = t(n) (see Fig. 109).

Using 5°(B), Lemma 28(d), 14°(y), (24), (25) and the fact that LT(o(B); ®) =
LT(o(w;,); ®) = y LT(o(«); ®) and reasoning exactly as in the proof of Theorem
4, we obtain

'7y ~ LT(o(p); @) " pam ™"

So we have verified (b) too. This completes the proof of (C) in Case. 3. Since
Cases 1, 2, 3 exhaust all possibilities, (C) is proved in its entirety.

In similar fashion, one can prove:

(C)) Either 1 € #(®P; Z;-; 13" ¢;) or there exists a simple path ' € Br(i) in
S(u ; P) connecting a vertex of T to a vertex of . and having properties (a'), (b').

We now deduce assertion (c) of Theorem 7 from (C) and (C'). As in the proof
of Theorem 4, assuming that 7& #(®;=;_, 13" ¢;), we see that, for some
subpath @ of 7,7 = 7,67,. Then, by (2),

(26) pr(y. 5 (D) = w"rl 01'2(0".
By Lemma 15(f) and Lemma 26(a),

@27 pr(p; @) v LT(o(u); €)' RT(t(); D).
Using (b), (b'), (26) and (27), we obtain

0 + nén'™,
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where ¢ is the path obtained by reducing the path po'pps™. Since po is a head of
p and p is a tail of u, & is a subpath of u or p7'.
This completes the proof of Theorem 7.

§8. Elimination of condition (SC,-,)

THEOREM 8. Let M =(M,{T, -+, 7.},<) be an ordered n-ranked map
satisfying condition (S.).

If M is simply-connected, then M satisfies condition (SC._)) (hence also
condition (SC;) for any i, 0=i <n).

ProOOF. We proceed by induction on the number of regions of M. Assume,
then, that the statement is true for any map with less regions.

We shall prove by induction on i that # satisfies (SC;), 0=i < n. First, we
show that A satisfies (SCo).

Let ® be a region in M. If clos(®) is not simply-connected, there is a closed
boundary path @ of ® such that

() o does not contain a boundary cycle of ®;

(B) w is a boundary cycle of some regular simply-connected submap N of M
such that int(N) is connected (see Fig. 118).

Let U:= 9, NReg(N) and let m be the maximal integer such that U, # Q.
Then & =(N,{U,, -, U}, <) is an ordered m-ranked map. Since M satisfies
condition (So), the same is true of . Since ® & Reg(N), N has less regions than
M. Then, by the induction hypothesis, N satisfies (SC.-1). Hence, there is
defined the sequence

© (1) (m-1)
NO=NND e N0,

Consider /™™™, By Corollary 2 to Theorem 4, NV satisfies D(8). But
N0 = (ND {41}, <) has only regions of rank 1 (recall that for I € %"

Fig. 118. Fig. 119.
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one has rank(I'”) = r —i in /'”’). Therefore each inner region of N has at
least 9 neighbouring regions (see Definition 13).

According to theorem V.4.3 of [1, p. 248], there exist a region ¥ in N7
and a boundary cycle o7 of ¥§™ such that o is a subpath of w and
T €YY V(3e,) in NV (see Definition 30). (See Fig. 119.) By Corollary 1 to
Theorem 4 and 4° of Theorem 4, pr. (7; ¥) € H(¥; Z~,3-13" ¢;). The path o is
on the common boundary of ¥4 and ®.

If rank(®) = r = m, then applying Theorem 5 with i, k, ®, ¥, r, s, u, 7 replaced
by m—1,0,%,®,m,r,07", pry(c'; ¥), we obtain

m-—1
pry(o; W)E X («1:; > 13" e, + e,> .
j=1

If rank(®) = r < m then, by Theorem 6, pr(o; ¥) € X (¥; X5 13" 7¢;). Using
Lemma 7(f) and Lemma 26(b), we obtain that in both cases there is a boundary
cycle ¢ of ¥ such that

m—1
YEH (\If; > 4-13"7¢; + 3en + e,) .
i=1

This is impossible in view of (So). Therefore clos(d) is simply-connected for any
region ® of M, and so M satisfies (SCo).

Now let n > i >1, and assume that # satisfies (SC;_,). We show that (SC;) is
also satisfied.

Indeed, if this is not the case then, by 5.1, the ordered 2-ranked map

MO = (MODAT D, TGP Y- U TED), <)

does not satisfy condition (SC). Then, by 3.5, there exist a region ® in M, of rank
r > i, an integer h 20 and a regular submap L of M“™”, such that

1°. Cho-n(@)C L C Chin(@").

2°. L is not simply-connected.

Without loss of generality, we choose h as small as possible and, for this A,
choose L with the smallest possible number of regions such that 1° and 2° remain
true. By Lemma 11,

3* int(L) is connected.

4°. L is distinct from Cha-n(®" ™).

Indeed, if h =0, then supp(Ciu-o(®“))=clos(®“ V). Since M satisfies
(SCi-), clos(®@™) is simply-connected; therefore, in view of 2°
clos(®“~") # supp(L).

We know that L and Chen(®“™") are submaps of M®™; hence
L# C%“_l)(¢(i—1)).
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Let h >0. Then L = Cie-v(®" ") implies
Clu»(@“ ) C L C Clean(@*)

contradicting the minimality of h. Necessarily, therefore, in this case also
L # Cle-n(®™), as required.

Comparing 1° and 4°, we obtain

5°. There is a region ¥ in M, of rank i, such that YD e Lhin(@ )N
Reg(L).

Let L, be the regular submap of L containing all the regions of L except ¥,

In view of 1° and 5°,

6°. Clhu-n(® ) C L, C Ciimnf( @),

The map L, contains less regions than L. Therefore, thanks to the minimality
property of the number of regions of L, we have:

7°. L, is simply-connected.
By Lemma 11, we abtain:

8. int(L,) is connected.
Since M satisfies (SCi_;), we have:

9. clos(¥“™") is simply-connected.
Since ¥ is a region in M“™", we have:

10°. ¥V is connected.

Furthermore, ¥ V€& ft’%l—w(d)““’), while Cia-(®“") C L,; therefore by the
Corollary to Lemma 10:

11°. ¥“™ and L, have at least one common boundary edge.

It is also true that:

12°. in(LY)N¥ V=,

In view of 7°, 8, 9°, 10° 11°, 12°, there exist paths w,, ., s, ws such that

13°. wo; is a p.o.b.c. of L,.

14°. ;0,4 is a p.o.b.c. of ¥,

15°. s is a p.o.b.c. of the simply-connected submap L, of M“™" obtained
from L by filling in all its holes (i.e. bounded connected components of the
complement to supp(L)) (see Fig. 120).

We distinguish between two cases:

(1) Reg(Lo) C{®“ JU T

(2) Reg(Lo) Z{®¢ VYU Ti-D,

Let us consider each case separately.

Case 1. Reg(Lo) c {q)(i—l)} U g’gi—l).
Let P be a submap of M“~" that fills in some of the holes of L (see Fig. 120).
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In other words, int(P) is a bounded connected component of compl(L).

By the construction of P:

16°. P is a regular simply-connected map and int(P) is connected.

Next, there are two paths »;, v, such that

17°. v, is a subpath of w,, v, is a subpath of w; and v,», is a boundary cycle of
P (see Fig. 121).

Since ®“ " is a region of L, it is not a region of P; hence, by the assumption of
Case 1, Reg(P)C T ¢ 7".

By Corollary 2 to Theorem 4, " satisfies condition D(8). This means that
each inner region T'“"€ J¢ ™ of M all of whose neighbouring regions
belong to JV7", has at least 9 neighbouring regions. In particular, each inner
region of P has at least 9 neighbouring regions. Then, by theorem V.4.3 of [1, p.
248], we obtain:

18°. There exist a region I~ in P and a boundary cycle or of I such that
o is a subpath of »,», and 7 €T "(3e,) in M (see Fig. 122).

Fig. 120. Fig. 121.
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We can write o = g,0;, where o (03), if non-trivial, is a subpath of v, (of v,).
If o, is non-trivial, it is on the common boundary of T "€ V™" and
YV e F¢D Hence

) @ €T Ye)  in MO

Now consider o;. Let

2) o1=MAr e A,

be the Lh.s factorization of o, in M“™" and let

3) AL A A,

be the corresponding sequence of regions. Denote

)] Li=duen(A, @), 1=j=p.

Since L, is to the left of a; and, by 6°, L; C Cia-n(d“), it follows that

5) L=h+1, 1=jsp

By Lemma 8(a), '™V € ZLie»(I1°V) for some region 119", By Lemma 11,
Cue-o(IT"") is connected. Therefore, necessarily I1°°"=®"“", Thus,

e Lyo-n(@P). But '™V is not a region in L, and so, in view of 6°,
dpen(TD, @ )y> b, On the other hand, for any j,

dpeo(T¢7, N = dpon(A;; ) +1 = +1.
Comparing these two inequalities, we obtain
©) Lzh, i1=j=p

19°. There is no j, 1 <j <p, such that 1=} and }.,=1.

Indeed, suppose that there exists j, 1 <j<p, such that _, =] and .. =1.
Then, as in Lemma 17(d), A; = B(A;) and therefore B(A;) € A;(e,) in M7, since
A = B(A)) is on the common boundary of A; and ™€ J¢V.

By Lemma 22(a), y(A;) € A;(e;) and 8(A;)E A;(ey) in M. If h =0 then
a(A;)E Aj(e;) in M°"; and if h >0 then, by Lemma 22(c), a(A;) € A; (2e,) in
Ji{(i—l)-

Let m:=a(A;) "'v(A;) 'B(A;)8(A;). By Lemma 6, 7 is a boundary cycle of A;
We obtain that if h =0, then 7 € A;(3e: + e,) in M, contradicting D(6; 1);
and if h >0, then 7 € A;(Se,) in M, contradicting D(8). This contradiction
shows that there is no j, 1<j <p, such that ;=1 and [,, =, as required.

By (5) and (6), [ =h or h+1 for j=1,2,---, p. Therefore, as we have
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mentioned in the proof of Lemma 25, if p >4 then there is always a j, 1 <j <p,
such that _, =/ and ., = . Hence, in view of 19°, p =4.

If h >0, then A; €EJ{ ™ for any j, and then o, ET "(pe,) STV V(4ey) in
MYV, Then, by (1) and 18°, the boundary cycle o,0,7 of ¥ belongs to
I'“""(8e,) in M“, in contradiction to D(8).

If h =0, then necessarily |, =0 or 1 for j =1,2,---, p, and }; and /;_; cannot
both vanish. Hence, in view of 19°, the only possible sequences (I, - - -, I,) are the
following:

0), (1), 0, 1), (1,0), (1,1),(1,0,1).

In each of these cases, 0, €I "(2e;+¢,) in M, and then 0,7 €
T¢"V(6e, + e,) in M7, this contradicts D(6; 1). We have thus shown that Case 1
is impossible.

Case 2. Reg(Lo))Z{®“ U Ti™.

Let L, be the regular submap of L, containing all the regions of L, except
Y4V 1t follows from 13°, 14° and 15° that

20°. w5 is a p.o.b.c. of L, (see Fig. 120).

In view of 7°, 8, 9°, 10°, w, and w, are simple paths which have no common
vertices except for their ends: o(w;) = 0(ws) # t(w,) = t(ws). Therefore:

21°. L, is simply-connected and int(L,) is connected.

Let N denote the submap of M such that supp(N) = supp(L.,). Since L, is a
regular submap of M“™", we have:

22°. N is a regular simply-connected (i — 1)}-submap of M such that int(N) is
connected.

Denote ¥;:= J; N Reg(N), and let q be the maximal integer such that ¥, # .
Then N =(N,{V,- -+, ¥,}, <) is an ordered q-ranked map satisfying (S,), since
M satisfies (So). Since N contains the region ® of rank r > i, we have ¢ =r > i.
Then map N has less regions than M, since ¥ & Reg(N) and, by 22°, N is
simply-connected. Therefore, by the induction hypothesis, N satisfies (SC,-,).
By Lemma 27, I\ =T% " for any region I'in N of rank = i, and therefore N¢™
is a submap of M“™V. Since supp(N“")=supp(N)=supp(L,) and L, is a
submap of M“", we obtain:

23°, N V=1L,

We now claim that

24°. L, C Cran(®).

Indeed, by 13°, 14°, 15° and 20°, L C L,. The map L, (L.) is obtained from L
(from L) by deleting V¢~ and some of its boundary edges and vertices; hence
L. CL,.
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By 6°,
Cha-n(@P)C L, C L= N,
Therefore, by Lemma 19,
C;‘m”l(q)ﬁ‘l)) ANPCC v':"r‘l“"(q)(i‘l)) C Cra-n(@“™)
and then, by 6°,
L; C C-(® ™) N N C Coa-n(@D),

as required.

25°, Caon(@~2) # N,

Indeed, by the assumption of Case 2, Reg(Lo))Z{®“ " }UJT{ ™. But
Reg(Lo) =Reg(L)U{¥* ™"} and ¥ Pe€J!™D  hence Reg(N")=
Reg(L,) Z{®“ VU T while

Reg(Cw—n((I)“’”)) = fw—l)(@“_l)) - {‘-'I)(i_')} U gf-';-l).

Since L; C Cxo-n(P ) C L, = N, it follows from 13°, 14°, 15° and 20° that
there is a path s such that

26°. wws is a p.o.b.c. of Ci-n(D“ ") (we recall that, by the induction
hypothesis, A satisfies (SC.) and therefore Cyro-»(®*"?) is simply-connected).

Since Ciu-n(P“™") # N, there is a submap Q of N~ which fills in one of
the holes in supp (Cii-v(®“ ")) U clos(¥¥ ) (see Fig. 123). Let H be the regular
submap of N such that supp (H) = supp (Q). By the construction of H, we have:

27°. H is a regular simply-connected map and int(H) is connected.

Since @ = int(Cyru-»(®“ ")) and int(H) is one of the connected components
of int(N)\clos(®%), we obtain:

28°. H is an i-submap of ¥.

On the other hand, since supp(H) =supp(Q) and Q is a submap of N¢7,
hence also of MY, we have:

29°. H is an (i —1)-submap of M.

Since A satisfies (SC,-1), we have

30°. clos(®Y) is simply-connected.

Hence there is a boundary cycle &£, of H such that

31°. ¢ is a subpath of ws and &; is a subpath of w, (see Fig. 124).

Let #;:=9; NReg(H) and let s be the maximal integer such that W, # &.
Then ¥ = (H AW, - -, W.}, <) is an ordered s-ranked map satisfying (So). Since
V& Reg(H), H has less regions than M and so, by 27° and the induction
hypothesis, # satisfies (SC,_,). By 28°, s = i.
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) {1=4)
\ ({#
El
ic
(8-7)
Hli-1)
Fig. 123, Fig. 124.

Consider the map 5%“~". By Corollary 2 to Theorem 4, #“™" satisfies D(8).
All the regions of %" are of rank 1, therefore each inner region of H* ™" has at
least 9 neighbouring regions. By theorem V.4.3 of [1, p. 248], there exist a region
%™ in H*™ and a boundary cycle en of I15 ™" such that

32°. ¢ is a subpath of &¢, and n €115 "(3e;) (see Fig. 125).

We can write ¢ = g8, where ¢(g>), if non-trivial, is a subpath of &, (of £,).

By Corollary 1 to Theorem 4, and 4° of Theorem 4,

) prx(n;INE X (H; i 3-13”&;) .

We now apply Theorem 6, with A N, k,i,®, ¥, u replaced by M, ¥, i —1,
s—1, ILW, ¢;". This gives

®) proc (&2 TI) € ¢ (n; D 13”’?:,-) .
j=t

Fig. 125.
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If r = rank(®) > s — 1, we apply Theorem 5, with M, N, k, i, @, ¥, u replaced by
N %, is—1,1I,®, e;". The result is

s—1
9) pra(e I E X (n; > 13°7¢; + e,) )
j=1

If r = rank(®) = s — 1, we apply Theorem 6, with #, A, k, i, ®, ¥, u replaced
by N, %, i, s —1, II, ®, £7'. Then

s=1
(10) pra(e I E X (H; > 13"’e,-) )
j=t

Since &£, is a boundary cycle of II%™ it follows, by Lemma 7(d), (f) and
Lemma 26(b), that there is a boundary cycle xy of IT with the property:

if r =rank(®)>s —1 then y € #(Il;Z;215-13°¢; + 3¢, + ¢,), and

if r =rank(®)=s —1 then y € #(I1; 21513 ¢; + 3e,).
In either case we have a contradiction to (So), and so Case 2 is also impossible.
This contradiction, in turn, shows that A satisfies (SC;). The induction argument
is completed and therefore # satisfies (SC.-).

The theorem is proved.

89. Proof of Theorem 3

We have a connected simply-connected ranked map (M, rank) satisfying
condition (S,) and having a reduced boundary cycle a. By the remark in the end
of §2, we may assume without loss of generality that M is regular and int(M) is
connected.

Let 7 be the set of regions of M of rank i. Let n be the maximal integer such
that 7,# . We have RegM)=T,UT,U---UT,, where NI, = for
i # j. We introduce a linear order “ < on the set 7,U- - - U 7, subject to the
condition that if rank(®) < rank(¥) for two regions ®, ¥, then also ¢ <V¥. By
Definition 12, we obtain an ordered n-ranked map

‘/“ = (M; {g—l’ g.Z, MY g—n}’ < )
(i) By Theorem 8, # satisfies (SC,-;). Consider the map
Ja(n—l) — (M(n—l)’ {g’sln—l)}, < ).

By Corollary 2 to Theorem 4, #"~" satisfies condition D(8). Since all the regions
of M are of rank 1, this means that each inner region of M has at least 9
neighbouring regions in M. Then, applying theorem V.4.3 of [1, p. 248], we
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conclude that there exist a region "~ in M and a boundary cycle ¢;¢, of
@V such that

1°. ¢, is a subpath of a.

2°. ¢, € DP""(3e,) in M (see Fig. 126).
If ¢ &MNii9"(Cci513" ¢, +4e,) then, for some i 1=i=n-1,
& & 9'(Z}215:13"7¢; + 4¢,). By Definition 34, this means that there exist

(o) a factorization ¢, = ¢p1Bd1;

(B) simple paths o, 7 €Br(i — 1);

(y) a boundary path y of some region ¥ in M, of rank i, such that

®) B~iolyr
and

(e) either y contains a boundary cycle of ¥ or, for some 8, 8 is a boundary
cycle of ¥ and

i—1
d€E %(q’; 2 5'13i_iei +4e,‘) .
=

Since ¢, is a subpath of a, B is also a subpath of a. In this case part (i) of
Theorem 3 is proved.

Assume now that ¢, € (-, 4" (S 5-13*~¢, + 4e,). By Lemma 7(d), (f) and
Lemma 26(b), there exists a boundary cycle 0,0, of ¢ such that

3° o4(02), if non-trivial, is a subpath of pr(¢;, ) (of pr(¢.; D)).

4. If ¢, is trivial then o is trivial. )

In view of 2°, it follows from Corollary 1 to Theorem 4 and 4° of Theo: m 4
that

) 52 € %X (cp; 3 3-13""e,-) .

=1

Then, because of (So), o1 € H(P; =;-1 13" ¢;). Therefore, applying Theorem 7
with i, u, T replaced by n — 1, ¢, o4, we conclude that there are two simple paths

Fig. 127.
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7, ' € Br(n — 1), each connecting a vertex on o, to a vertex on ¢,, with the
following properties:

5°. Let 7, be the head of o, such that t(7,) = o(n) and 7, the tail of o, such that
o(r) =o(n"). Then 7, 1. € H(P; ;- 3-13"7¢).

6°. o, = 7,07, for some subpath 8 of ¢,. Furthermore, for some subpath B of
¢ or ¢7' connecting t(n) to t(n’), 8 ~imBn’" (see Fig. 127). By (1) and 5°,

— n-1
20,7 € %(d>; S 4-13" ¢, + 3e,.) C¥ (<I); 2 513" 7¢; +4e,.) .
i=1 =1

Taking i:=n—1, y:=6, 8:=m0:m, 0:=7, :=7' we see that part (i) of
Theorem 3 is proved.

(i) Let s, 0= s < n, be the minimal integer for which there exist a region ¥
in M® and a p.o. boundary cycle ¢4, of ¥ such that

7°. ¢, is a subpath of a.

8. Either ¢, € ¥*(4e,) or ¥, € ¥(2e; +¢,) in MY,
The existence of this s follows from the fact, verified in the proof of part (i) of
Theorem 3, that there exist a region "~ in M~ and a boundary cycle ¢, ¢. of
@V satisfying conditions 1° and 2°.

If ¢, €E ¥9(2e,+e,) in M® then, by 5.1, ¢, E ¥ (2e; +¢) in M for some
t >1. By Corollary 1 to Theorem 4 and 4° of Theorem 4, we obtain

%°. If ¢, € ¥(de,) in M, hence in M, then

s+1
pr(y; V)E K (\Ir; > 4'13"‘""8;) .
=
if ¥, € V(e +¢) in M, then
pr(ys W)€ 3 (¥; 3, 3137 g, + 20 e,
=1

Let m, be the maximal head of i, such that 7, is a head of RT(o(y); ¥). Then
Yn = 1, for some ¥, and let 77, be the maximal tail of ¥, such that 73" is a head
of LT(t(¢.); ¥). Then, for some boundary path ¢ of ¥,

()] ¥ = mym,

(see Fig. 128).

Since o(y) = t(y.) and t(y1) = o(y.), by Definitions 19, 27 and 32, pr(y.; ¥) =
pr(my,m; ¥). By 9° and (So), pr(y.; ¥) cannot contain a boundary cycle of ¥;
therefore, in view of Lemma 7(f) and Lemma 26(b):

10°. ¢ is non-trivial.
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Fig. 128.

We now show by induction on i that ¢ is on the boundary of ¥¢7”,
i=0,1,---, s If i =0, there is nothing to prove. Let i >0, i < 5. By the induction
hypothesis, ¢ is on the boundary of ¥“ ™V,

11°, Let II°™” be a region in Cye-»(¥*™) and o a subpath of ¢ which is a
boundary path of IT1¢™", If I1“™” # ¥*" then o# B(II*™").

Indeed, denote a;:=a(1*™?), By:=BAI*™), yi:=yAI¢™"), &:=80T°").
Then, by Lemma 6 and Definition 26, 8,a7'y:'B: is a boundary cycle
of TI“” (see Fig. 129). If dmeo(II, ¥*)=1 then, by Lemma 22(b),
Siai'y  EM2e, + e) in M. If dpe-o(I1°7, ¥¢ ") > 1 then, by Corollary
2 to Theorem 4 and Lemma 22(c), &;a:'yi' € I1“™"(4e,) in M“". Therefore, if
o =f, then IT“” and B:8,ai'y;' satisfy conditions 7°, 8 with W,s, ¢, .
replaced by II,s —i, B8, 8:ai'y7', contradicting the minimality of s. Thus,
o # B(II®™"), as required.

We now apply Proposition 1 with M, ®, u replaced by M®™, ¥¢™ y. This
gives a factorization ¢ = ¢'"¢" and, if " is non-trivial, a further factorization
Y" =12+ v, such that

12°. ' is a head of RT(o(y); V).

13°. ¢ ' is a head of LT(t(¢); V).

14°. If ¢" is non-trivial, then " is on the boundary of (¥*7)'; if w; is
not on the boundary of W for some j, then w =B(I¥ ") for some
I € Lie-o(PE).

By the construction of r;, my' is a head of RT(o(¢); ¥). Therefore, by the
maximality of m,, it follows that ¢’ is trivial. Similarly, ¢" is trivial, and hence

b=y
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T

a9 oy} ]

y_}fr.._'“,

Fig. 129. Fig. 130.

Comparing 10°, 11° and 14°, we conclude that ¢ is on the boundary of ¢“™".
This completes the induction argument. Thus, ¢ is on the boundary of V.

Let 7 be a boundary path of ¥ such that Y is a boundary cycle of ¥ (see Fig.
130). Since , is a head of RT(t(¢.); ¥) and t(7r,) belongs to the boundary of ¥,
we obtain ; = RT(t(y,); ¥). Similarly, 7;' = LT(o(y.); ¥). Then, by Lemma
15(f) and Lemma 26(a), T = pr(y»; ¥).

We have thus determined a region ¥ and a boundary cycle 7 of ¥ such that ¢
is a subpath of a and, by 9°, 7 = pr(¢,; ¥) belongs either to ¥ (¥; £;14-13°*7¢;)
orto H(V; Z;_3-13°*"7¢; +2e,41 + €,4,). Take k:=rank(¥). Then s < k because
¥ is a region in M®. Hence either 7€ #(¥;Z}.,413*7¢) or 7€
H(V; 2! 313 e, +2e +e,.,) if s+1>k, as required. This completes the
proof of part (ii).

(iii) We prove by induction on n — i that card(7,) is eflectively bounded in
terms of the length || of the boundary cycle a of M and the maximum I, of
lengths of boundary cycles of regions of M.

Let n —i =0. Consider the map M. As we have shown, each inner region
of MV has at least 9 neighbouring regions. Therefore, by the “area theorem”
(1], p- 260), card(Reg(M" ™)) = card(T ") = card(7,) is effectively bounded
in terms of |« |.

Let n —i >0. Consider the ordered 2-ranked map

MOD = (MODATED, TGP U U T, <),

By the induction hypothesis, card(7{° U - - - U T47Y) is effectively bounded in
terms of |a| and J,. Define

WU:={@""| BV € T, ind(d' ) = 2e, + 2e, in M),

By Proposition 3, card({ "\ %) is effectively bounded in terms of |a| and
card(T¢P U -+ - U T4Y). Therefore, it is enough to prove the following:

) card(U) = 2lycard(T P U--- U TED),
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Consider a region " € .. By Definitions 29 and 31, there exists a positively
oriented boundary cycle uv of &7V such that:

15°. v € ®“V(2e, + €;) in M.

16°. u is on the common boundary of ®“” and some region ¥ "€ 7" U
e UT f" )

Furthermore, we have

17°. pr(p; ) & H(D; ZiZi 13 7¢;).

Indeed, by Lemma 7(d), (f) and Lemma 26(b), there exists a boundary cycle
g0 of @ such that o, is a subpath of pr(u ; ®) and o is a subpath of pr(v; ®). By
15° and 5.1, vy €D PQe, + &) in M " for some ¢t >1; then by Corollary 1 to
Theorem 4,

i—1
(1) E%(q); 2 3'13i_iej +2¢ + ei+1—l) .
j=1
If pr(u; @) € #(P; ZjZ1 13'7¢;) then also o; € H(P;Z]Z113'¢;) and then
i-1
o0, € %(‘D, 2 4'13'-4116,' +2e + el+i—l) ’
=

contradicting (So). Thus, pr(u ; ®) & ¥ (P; 2113 ¢;).

We apply now Theorem 4, with i, ', 7, »” replaced by i —1, o(pr(u;®)),
pr(u;®), t(pr(n;®)). Since pr(u;P)& H(P;2;Zi13'7¢) and rank(P)=i<
rank(¥), we obtain by (A(a)), (A(y)) that there exists a vertex t(n) of 4 which is
a common vertex of bd(¥) and bd(¥¢™).

We assign to any region ®* V€ 4 a triple (¥, u, v) where

(@ ¥PETEPU- - UTEY;

(8) p is a non-trivial path on the common boundary of &~ and ¥¢™;

(y) v is a vertex of u and v €bd(¥) Nbd(¥“ ™).

Let @™ and ®{™ be two distinct regions in % and let (¥§>, ui, vy),
(W47, 2, v,) be the corresponding triples. If ¥§ ™ = W4{~, then there are only
the following possibilities for v, and v, to coincide:

t(n1) = v1 = 02 = o), o{pm1) = 0, = v =t(u2)

for u; and u, have no (non-oriented) edges in common.

Let¥€ J..U---UJ, and let w be a boundary cycle of ¥. Since the number
of distinct vertices v appearing in triples of the type (¥, u, v) with the same
WD cannot exceed | w |, there are at most 2| w | such triples. We have |w|= 1,
and therefore the total number of triples (¥“ 7, u,v) cannot exceed
2lpcard(Tia U--- U T,).
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In view of (B), to distinct regions ®,, ®, € U are assigned distinct triples and
therefore

card(U) =2l card(Ji. U - U T,).

Since card(J;) = card(F{™") for j =i, (3) is proved. This completes the induc-
tion. The number of regions of M is thus effectively bounded in terms of I, and
|a|. This proves part (iii).

The theorem is proved.
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