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GENERALIZED SMALL CANCELLATION 
THEORY AND APPLICATIONS 

I. THE WORD PROBLEM 

BY 

E. RIPS 

ABSTRACT 

In this paper we develop a generalization of the small cancellation theory. The 
usual small cancellation hypotheses are replaced by some condition that, 
roughly speaking, says that if a common part of two relations is a big piece of 
one relation then it must be a very small piece of another. In particular, we show 
that .a finitely presented generalized small cancellation group has a solvable 
word problem. The machinery developed in the paper is to be used in the 
following papers of this series for constructing some group-theoretic examples. 

Introduction 

Various problems in group theory are related to construction of groups by 
generators and relations. Although most algorithmic problems concerning 
presentations of groups (in particular, even/he problem of being trivial) have, in 

general, a negative solution, it has been discovered that, in certain cases, 
important information about a group can be derived from the eombinatorial 
properties of its presentation by generators and defining relations. 

Max Dehn solved the word and conjugacy problems for the fundamental 

groups of compact Riemann surfaces of genus > 1. These groups are defined by a 
single relator r with the property that, if s is a cyclic permutation of r or r -1, with 

s~  r -1, there is very little cancellation when the product rs  is formed. Dehn's 
results were later generalized by several authors to a wider class of groups, 

possessing presentations in which the defining relations have a similar small 

cancellation property (for more details and bibliography, see [1]). 
An essential feature of small-cancellation groups is that, if a freely reduced 

non-trivial word w is equal to 1, then w contains a large part of some cyclic 

permutation of a defining relation (or its inverse). This yields a criterion for 

w ~  1, which is used to prove some embedding theorems by small cancellation 
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methods (see [1], p. 282). Moreover, this criterion suggests that small cancella- 

tion may prove helpful in showing that a given group is non-trivial or even 

infinite. However, in trying to apply the small cancellation theory to certain 

group theoretic problems we meet difficulties, indicating that an essential 

generalization of the small cancellation hypotheses is needed. This is evident 

from the following example. 

In order to construct a non-trivial finitely generated divisible group, it is 

natural to proceed as follows: 

Let F be a finitely generated free group. Since the set F x N is countable, we 

write its elements in a sequence 

(gl,  nl), (g2, n 2 ) , . . . ,  (g~, n~), .  • •. 

Choose hi, h2, ' . . ,  hk,''" elements of F and let fit be the set of elements 
{hn - ,  . . . .  k'gk I k 1, 2, " }. For N (fit)F, F / N  is a finitely generated divisible group. 

The problem now reduces to verifying that, for a suitable choice of elements hk, 

F / N  is non-trivial. One is tempted to try to choose the elements h~ so that (after 
n k --1 

symmetrizing) the set fit = {h k g k I k = 1, 2 , " "  } satisfies suitable small cancella- 
el k - -1  

tion conditions. Unfortunately, this seems to be impossible. Indeed, if h k g k is a 
n k - 1  - -1  

cyclically reduced word, then the symmetrizing process adds hk gk hk to the 
n k - - 1  

relations and then h k is a common initial segment of these two relations. If 

hk gk is reducible, a similar argument applies after this word has been reduced. 
n k - -1  

Even worse, g~ ranges over all elements of F, and so, for any fixed h k g k , some 
el I - -  1 

later ht g~ will contain it as a segment. 

Inevitably, we need either a different approach or a modification of the small 

cancellation hypotheses, in such a way that in certain cases relations having large 

common segments are admitted. 

This is the objective of the first paper of this series, in which we introduce the 

following extension of the small cancellation hypotheses: 

(1) We consider fit = [,-J,~l ~ as a union of disjoint sets where, roughly 

speaking, the length of the words in ~ increases with n. 

(2) We replace the notion of a piece (a common subword of two relations) by 

a new and more complicated notion which relates subwords of relations. 

Graphically, the comparison between the old and the new notion is presented in 

Fig. 1 where words are denoted by lines. Here A is a subword of R E fitk, B is a 

subword of some relator S • fitj or, possibly, of a power S "  of S (m > 1), Z1 and 

Z2 are words of a special type (they belong to the class of words ~V'h described in 

§1, where h = min(k,j)  - 1), A- IZ IBZ~  1 belongs to the normal subgroup of F 

generated by fit1 U fit2 U . .  • t.J fith. We call A a (generalized) j-piece of R. 
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l/Z 

{,I, ~1 

~ U f A ~  z .S .~ Av' 

old notion new notion 

Fig. 1. 

(3) The condition that the generalized pieces be small, which is stated here in 
a metric form, can be formulated as follows: 

S(A, 0). Let A and 0 be two constants satisfying the inequalities 

0 < A <  1 0<O__<l 6A + 13A2 
= 2 1  ' 1 - 13A 

For a (generalized) ]-piece A of a relator R ~ 9rE we require that, if j > k, 

then [A I < A k-m[R I, and, if ] > k, then I a [ < 0 I R I, where J W I denotes the 
length of the word W. 

As a matter of fact, in the paper we shall use the following, closely related, 
non-metric condition. 

(S) Let R E 9~, be decomposed as a product of generalized pieces of various 
types: 

R - A1A2""  Ap. 

For / = 1 ,  2 , . . . ,  let dj be the number of (generalized)/-pieces At appearing in 
this factorization. Then the numbers dl, d : , . . ,  are subject to the following 
limitations: 

(a) We cannot have 

d,-<8.13 k-', d2--<8"13k-2,''',dk<--8, d j=O f o r j > k .  

([3) We cannot have, for some h > k, 

dt --< 7.13 k-l, 

&-<6,  d h = l  

d2 -< 7.13~-2, ". ., dk-t <- 7.13, 

and a ,=o  f o r j > k , j # h .  
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It can be shown that S(A, 0) implies (S). Indeed, if S(A, 0) holds, then 

If dj ~ 8"13 k-j for ] _-< k and dj = 0 for j > k then, for A --< 1/21, 

[ R I <  8.13k-'a k-'÷' [ R [ < l _ 1 3  A = 

which is a contradiction. 

Now suppose that for some h > k ,  we have dj <7.13 k-j for ] <k ,  dk <_--6, 

dh =1  and d1 = 0  for ] > k ,  ] ~ h ;  then 

k - ,  /6A+13X ~ O) IRI<IR I [RI<(j~17"13k-'Ak-'+'+6A +0) lal<k'i--1- ~ + 

which is also impossible. Thus, (S) holds. 

Our main results can be stated in the metric form as follows (cf. Theorem 1, 

where the results are stated in the non-metric form): 

Let ~ be a symmetrized subset of F, ~ = I,J.~, ~ ,  satisfying condition 

S(,~, 0). Let N = (~)F. Then: 

(1) Every (freely reduced) non-trivial word W in N contains a subword A 

which is related to a word B such that either B is a "large" subword of some 
relator R in ~ (i.e. [B[ > (1 - (4X + 13X~)/(1 - 13a))[ R [) or even B ------ R mR' 

with m >= 1, R = R 'R"  in the following sense (see Fig. 2): 

There are words Z,, Z~ of a special type (belonging to the class of words ~ _ ,  

described in §1 and satisfying condition (L)) such that A- 'Z~'BZ2 belongs to the 

normal subgroup of F generated by ~ ,  U . . .  U ~--,. 

(2) Every (freely reduced) non-trivial word W in N contains a subword C 

which is also a subword of some relator S E ~  such that [ C [ >  

(1 - 0 - (4a + 13a~)/(1 - 13a))[ S[ (see Fig. 3). 
(3) If ~ is finite then the quotient group F/N has a solvable group problem. 

Z, Zz 

Fig. 2. Fig. 3. 
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If ~ satisfies some (relatively mild) additional conditions, then one can deduce 

from part (1) the existence of an analog of Dehn's Algorithm in F / N  (see 

Theorem 2). 
Statement (2) implies the infinity of F / N  in most cases. It is fundamental for 

the applications, which will be presented in the subsequent papers of this series. 

Following the geometric approach of R. C. Lyndon, we consider van Kampen 

diagrams. We introduce a rank function on regions as follows: rank(D)= i 

whenever the relator R written on the boundary of the region q~ belongs to ~ .  

This makes it possible to translate our statements into statements about maps in 

the plane with a given rank of regions, subject to certain conditions of a 

combinatorial geometric nature. 

§1. Statement of the main results; comments 

1.1. Let F be a free group on a set X of generators. A letter is an element of 

the set Y of generators and inverses of generators. A word W is a finite string of 

letters, W = yl"" • yn. We denote the identity of F by 1. Each element of F has a 

unique presentation as a reduced word W = y l . . .  y~ in which no two successive 

letters yjy~+~ form an inverse pair x,xT ~ or xT'x,. The integer n is the length of W, 

which we denote by I W[. A reduced word W is said to be cyclically reduced if y, 

is not the inverse of y,. We use " - - "  to denote graphical identity of words. The 

notation U = V (mod N) means that the words U and V are equal modulo the 

normal subgroup N. 

A subset ~ of F is said to be symmetrized if all elements of ~ are cyclically 

reduced and, for each R in ~t, all cyclically reduced conjugates of both R and 

R -~ also belong to ~t. 

1.2. Let (~ )~1  be a family of disjoint symmetrized subsets of F. We shall 

consider combinatorial conditions on this family which generalizes the small 

cancellation hypotheses. 

These conditions depend on an auxiliary family of sets (~),~0. 
Let N~, i = 1, 2 , . . - ,  be the normal subgroup of F generated by ~ ,  t3.--  U ~t,, 

let No = E, the trivial subgroup, and let N be the normal subgroup of F 

generated by ~ = I-li~-19~. 

We are going to generalize the notion of a piece of a relator. Our starting point 

is the following definition of a piece in the ordinary small cancellation theory. 

A subword A of a relator R - U~A U2 is said to be a piece if there is a relator 

S, with a faetorization S ~- AV,  such that S-IAU:U1 is not freely equal to 1 or to 

a conjugate of a relator (see [1], p. 240 and p. 271). 



6 E. RIPS Isr. J. Math. 

DEFtNrnoN 1. Given an integer j _-> 1, a word A is said to be a (generalized) 

j-piece of a relator R ~ ~k (relative to (~l~)~ and (~/4/~)~o) if R =- U1AU2 and 
there exist a relator S E ~j  and two words Z1, Z2 E off.h, where h = rain(k, j )  - 1, 

such that (see Fig. 1): 

(1) For some m _-__ 1, there is a factorization S"  - BV. 

(2) A = Z,  BZ~'  (rood Nh). 

(3) If k = j  then (ct) Z ~ S - Z Z ; ' A U 2 U ~ N h ;  ([3) Z~S-'Z;~AU2U~ is not 

conjugate modulo Nh to a relator T E ~ .  

Let ~ ( R  ; j )  denote the set of all j-pieces of a relator R. 

We shall use factorizations of subwords of relators into products of general- 

ized pieces of various types. In this connection we introduce the following 

notation. 

Let c = (c~, c~,' .  • ) be a sequence of numbers. For a relator R, ,~(R; c) will 

denote the set of all subwords D of R ' ,  i.e. R " - P x D P 2 ,  which have a 

factorization D - D I D 2 " "  Dk such that each D, is an f(l)-piece of R, 1 _-__ ! _-< k, 

and 

card{l [f(1) =j}<- c, (j >- 1) 

(i.e., the number of j-pieces in this factorization does not exceed c~). ~ ° (R ;c )  

will denote the set of all subwords Q of R"  such that every subword of O 

belongs to ,~(R ; c) (n _-> 1). 

1.3. Introducing sequences e~ = (0 ,0 , . .  - , 0 ,1 ,0 , - . - ) ,  where 1 is in the j - th  

place, we can write c = Yj~ cjej. 

Our generalized small cancellation hypotheses consist of two conditions (S) 

and (L), which we now state. 

Condition (S). For any i _-> 1 and R E ~,,  
(~t) R ~  .9(R;Y.J.~8.13'-'e,); 

([3) for any k >i,  R~.~(R;Y.~2~7.13'-Jej +6e, +ek).  

REMARK. This condition means that, if R has a factorization R -  

D~D2.. .  Dh into a product of generalized pieces/5)1, 1 _-_ 1 _-< h, then (et) asserts 

that it cannot happen that none of the D~'s is a j-piece for j > i and that, at the 

same time, there are at most 8.13 '-1 j-pieces for j = 1 , 2 , . . . , i ;  or, stated 

positively, either some D~ is a j-piece with j > i, or for some j, 1 _-< j _-< i, there are 

more than 8.13 '-j j-pieces in the faetorization. Similarly, ([3) asserts that it cannot 
happen that only one D~ is a k-piece with k > i, all other factors are j-pieces 

with j -</, the number of i-pieces does not exceed 6, and, for j < i, the number of 

j-pieces does not exceed 7.13 ~-j. 



Vol. 41, 1982 SMALL CANCELLATION THEORY 7 

Roughly speaking, condition (S) states that, for any relator R U ~-, the 
j-pieces of R with j _-__ i are "relatively small" subwords, while the j-pieces of R 
with j > i are "strictly less" than R (and cannot be completed to R even by 
adding "relatively many" generalized pieces of types _-__ i). 

Condition (L). (,x) 1 E ~ for all i _>- O; 
(13) if U,, U2 ~ °/¢~-1 and V ~ ~(R;E~=~ 2.1Y-Jei + e~) for some R E ~-, then 

U1VU2E ~ ,  i = 1 , 2 , . . . .  

REMARK. Notice that, according to Definition 1, the larger the sets ~ ,  the 
more possibilities we have for generalized pieces, hence the larger are the sets 
~ ( R ; j ) ,  ,~(R; c), ~ ( R ;  c) and the more restrictive is condition (S). 

1.4. Our main result is the following 

THEOREM 1. Let (~) ,~,  be a family of disjoint symmetrized subsets of the[tee 

group F and let (°t~),~-o be a family of subsets of F. Let N ( N  ) denote the normal 
subgroup of F generated by ~ = I,.J,~l ~. (respectively, by 9~1 U . . .  LJ ~t,). 

If  the families of sets (~. ),~.1 and (°W'~ ),~o satisfy conditions (S) and (L) then: 
(i) Every freely reduced non-trivial word W in N contains a subword A (i.e. 

W =- W1AW2) for which there exist a word B, an integer i, two words ZI, Z2 E 

~_~ and a relator R E ~ such that 

A-1ZY1BZ2 ~ N~_1 

and either there exists a factorization R ==-BU with 

( '  ) U E  ~'  R;  ~ 5-13~-Jej +4e~ 
i=1 

or B - R " R ' ,  with m ~- 1 and R - R ' R "  (see Fig. 2). 
(ii) Every freely reduced non-trivial word W in N contains a subword C (i.e. 

W = WICW~) for which there exist an integer k and a relator S E ~tk with a 
factorization S - C V  such that either 

V E ~ ( S ; s ~ . 4 " 1 3 k - ' e j  ) 

or, for some h > k, 
k - 1  

i=1 

(iii) If  U,~-~ ~ is finite then G = F / N  has a solvable word problem. 
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By imposing the metric condition S(A, 0), we obtain information about the 
relative lengths of B and C: 

COROLLARY 1. If (~,),~-1 and (~),___o satisfy S(A, 0) and (L) then in the 
notation of part (i) of Theorem 1 we also have 

i n l > ( 1  - 4A + 13A2~ T---i~ /Iel 

and in the notation of part (ii) of Theorem 1 we have 

4A + 13hz~ [Cl>(1-o 1 - - 1 ~  ] ISI .  

PROOf:. As shown in the introduction, condition S(A, 0) implies condition (S). 
By part (i) of Theorem 1, 

) U ff ~ R ; 5.13~-Jej + 4e, . 
j=l 

Hence, by S(A, 0), 

( ~  +4A) 4A + laA  2 I u l <  5"13'-'x '-'+' IRI, \~=1 R < 1 -13A 

and then 

IBI---IRI-I UI>(1 4A + 13hz'~ T - - ~  /IRI. 

Similarly, from part (ii) of Theorem 1 we deduce that either IV[ < 
(4A/(1 - 13A)) I S l or I UI < ((2A + 1312)/(1 - 13A) + 0)l S I. 

In either case, { V I < ((4A + 13A2)/(1 - 13A) + 0)1S I . Therefore, 

4A + 13A2~ Icl=lsl-lvl>( 1-°-  1-13A / I S l ,  

as required. 
Consider the following additional conditions on (~),~1 and (°/¢~),~o: 
(a) There exists a constant ~1 > 0 such that, for any i => 1, R E ~- and k -> 1, 

R k = O (rood N~_I) 

implies IRk l < (1 + n)l o I, i.e. R k is almost (up to 7 ) t h e  shortest representa- 
tive of its eoset modulo ~ - t .  
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(b) The lengths of words in ~ are bounded by some constant w,, i _-__ 0. 
(c) Denote r h = min{[R 11R ~ ~j}, j => 1. The constants A, 19, w,, r h satisfy the 

following inequalities: 

4w,_....._~ < 1 - 7/ 4w,-_.__~x + 2 4A + 13A 2 1 (i > 1). 
r/~ 1 + 7/ ' 19, 1 - 13A < 1 +'----~ = 

COROLLARY 2. Let (~,),>x and (°l~),,_o satisfy S(A, 0), (L) and the additional 
conditions (a), (b), (c). Then, in the notation of part (i) of Theorem 1 if R =-BU 
then 

IZ;'U-'Z21<IA[, hence Iw, z;'u-1z2w21<lwl 

and if B =- R'~R' then IZ?IR'Z2t < IAt ,  hence t WIZ~IR'Z¢ W21 <1WI. 

PROOF. Let R =- BU. Since A-1Z;'  BZ2 E N,_I, it follows that R = Z~AZ~ 1U 
(mod ~_~). Then, by (a), IRI----(1 + n)l Z, AZCU[.  By (b), [Zt I<--_-w,_~ and, by 
(c), tRl_--- 7/,. Therefore, Iz, I <(w,-i/n,)lR I. Similarly, IZ21 <(w,-,/n,)lR I. By 
Corollary 1, I uI  < ((4x + 13x2)/(1 - 13X))IR I. Then 

( 1 4A+13A 2 2wi_1/tR[.  
[a[=> 1-~7/ 1 -13A 7/, / 

On the other hand, [Z? 1U-JZ2[ < (2w,-dTI, + (4A + 13A 2)/(1 - 13A))[R [. By (c), 

2W~_l 4A +13A 2 1 2w,-i 4A +13A 2 - - +  < - -  
~/~ 1 - 1 3 A  1 + 19 7/i 1 - 13A 

and, therefore, [Z? 1U-~Z2[ < l a  [ and [ W~Z? ~ U-IZ2 W21 < 1 W [ .  
Let B- -RmR '. Since A-~Z7IBZ2E N~_I, it follows that 

R "÷1 = ZIAZCR" (mod N,_ 0. 

Then, by (a), (m + 1)IR I <(1 + n)IZ~AZ?R"I, w e  obtain 

[a[>--In+'1\1+7 2w,_~19, [[R"[]) [R[" 

We have [Z;~R"Z2I<=(2w,_dTI~+[R'[/[RI)IR[. Since [R'[+[R"]=IR[, by 
(c), 

( 2w~_~+[ < 1 - r / _ 2 w i - l +  1 
r/, I = l + r /  r/, [R[] 

<m-~+l_2W,______~_[R"l=m+l 2w,-, IR"[ 
= l + r /  7, JR[ l + r l  rl, I R I "  

Therefore, IZ?R'Z21 < I a l  and I WlZ?R'Z2W21 < l w l ,  as required. 
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If R - - B U ,  take W' :=W1Z-(  1U-IZ2W2 and if B - - - R " R ' ,  take 

W': W1Z7~R'Z2W2. We have W' = W (rood N~) and, by Corollary 2, ] W' I < 

I W I. We use this fact to show that, under certain additional conditions, there is 

an analog of Dehn's Algorithm which solves the word problem in G = F/N. 

THEOREM 2. Let the set X of generators of F be countable, let (~t~)~ and 
( ~  ),,-o satisfy the conditions S(A, 0), (L), (a), (b), (c) and, additionally: 

(d) The 9~ have a uniformly solvable word problem, i.e., there is a recursive 

procedure ~( i, W) which, when given i and a word W, decides whether W E ~t~. 

(e) The elements of ~ = U ~ ,  ~ of a fixed length are uniformly listable, i.e. 
there is a recursive procedure ~(n  ) which, when given n, actually lists all words of 
~t of length ~= n (together with the indices of the ~t~ to which they belong). 

(f) The sets ~ are uniformly listable. 
The above hypotheses are sufficient for the effectiveness of applying Dehn's 

Algorithm to G = F/N. 

(I am grateful to Professor P. E. Schupp who has corrected the statement of 

conditions (d), (e), (f) of Theorem 2 (communicated to me by Professor J. J. 

Rotman).) 

We show now how Theorem 2 is deduced from Corollary 2 to Theorem 1. 

For the moment, let us say that a word W in F is i-reducible if there exist a 
factorization W =-W~AW2, two words Z~, Z 2 ~  ~ - ~ ,  a word B and a relator 
R E ~ ,  such that A - ~ Z ~ B Z 2 E ~ _ ~  and either (1) R =-BU and IZ-flU-~Z21< 
[AI ,  or (2) B - R m R  ' with m >-1, R =-R'R" and ] Z f I R ' Z 2 I < I A I .  

If a word is not /-reducible, we call it i-reduced. 
In the first case I Z,  AZi~ U I = I A I + l Z7 ~ U-~Z21 < 21A 1. We have R - B U = 

Z ~ A Z ~ U  (mod N~_I); hence, by (a), 

[R I_---(1 + n ) l z ,  a z ~ ' u [  < 2(1 + n ) lm  I ~ 2(1 + n)[ Wl.  

In the second case R "  = Z ~ A Z ~ R  '-~ (mod N_~), hence 

J R ' l _ -  < (1 + r l ) lz ,  m z ~ ' R ' - '  [ = (1 + n)(lal+lZr'R'Z~[) 

_-<2(1 + n ) l a  [ ~<2(1 + n)[ w [ .  

In view of (d) and (e), we can effectively list all words in ~.  of length 

< 2(1 + rl)[ W[. By (f), °/I~_~ is a finite set. Therefore, if F/N~_~ has a solvable 

word problem, we can effectively decide whether or not a given word W is 

/-reducible and in case W is i-reducible,we can effectively find a word W' such 

that I w'l < lwl  and W' = W (mod N~). 
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We can now show by induction on k that each F/N~ has a solvable word 

problem. This is clear for k = 0, because No = E and F/No = F. Let us assume 

that F/N, has a solvable word problem for i < k. 

Let W be a word in F. In view of the above remarks, we can effectively find a 

word W0 such that W = Wo (mod Nk), t Wol =< I W I and Wo is /-reduced for any 

i<-_k. 

If Wo -= 1 then W E Nk. If Wo ~ 1, then applying Corollary 2 to Wo with (9~),~.~ 

replaced by ( ~ ) j ~  where ~'~ = ~ for i -< k and ~'~ = O for i > k, we obtain 

Wo li~ Nk and therefore Wt~ Nk. Thus F/Nk has a solvable word problem. 

We now turn to the word problem in F/N. Let W be a word in F. In view of (d) 

and (e), we can effectively find an integer h such that, for any i > h, the set 

does not contain words of length <2(1 + 7/) I W I . Since for any i, F/1V~ has a 

solvable word problem, we can effectively find a word Wo such that I Wol --< I W I, 

W = Wo (mod Nh) and Wo is /-reduced for any i _-< h. We claim that W0 is 

/-reduced for any i > h as well. Indeed, if Wo is i-reducible for some i then 

contains a relator R such that I R I < 2(1 + 7/) I Wol --- 2(1 + r/) I WI. By our choice 

of h, this cannot happen for i > h. Thus, Wo is i-reduced for all i => 1. 

W = Wo (mod Nh) implies W = Wo (mod N). 

If Wo = 1 then W E N. If Wo ~ 1 then, by Corollary 2, W0 ~ N and therefore 

W E  N. Thus, F / N  has a solvable word problem, as required. 

1.5. In this paper we shall only develop the machinery, leaving the applica- 

tions to subsequent papers of this series. For this reason, we should like to 

describe briefly a few examples that give an idea of how the method works. Most 

of these examples are known even in a stronger form. They will not be used in 

the rest of the paper. 

1 °. Ordinary small cancellation. Consider the case in which all the sets ~ ,  

except ~ ,  are empty and °/¥'o = {1}. 

Then, for R - U~AU2 E ~, ,  A is a 1-piece of R if and only if there is a relator 

S ~ A V E  ~t~ such that V-'U2U~ is not freely equal to 1 or to a conjugate of 

some relator T E ~ , .  

Condition (S) now asserts that no relator can be written as a product of less 

than 9 1-pieces. Since all the sets ~, ,  i > 1, are empty, we can enlarge the sets 

o/¢~, i > 0, without affecting condition (S). For example, we can take ~¢, = F for 

i > 0. Then condition (L) is automatically satisfied. 

Theorem 1 asserts that every freely reduced word W in N contains a subword 

A such that, for some R E 9~, we have R - A Q 1 Q 2 Q 3 Q 4 ,  where the Qi's are 

1-pieces of R. 
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2 °. Small cancellation in free products. Let H = II* H~, a free product of 

groups. For a subset ~ of H, let K be the normal subgroup of H generated by ,Y 

and let G = H/K.  

For each Ha, we have H~ = F~/U~ for some free group F~ and normal 

subgroup U~ of F, .  Let F = l'l* F~ and let o-: F---~ H be induced by epimorph- 

isms F~ --~ H~. 

Consider the following families of sets (9~i)~1 and (°/4~)~o in F. Let o/: be the 

subset of U~ consisting of all non-trivial cyclically reduced words. Take 

~ 1 =  U~°/:~. Let 0L' be a subset of F such that tr(~'~)--,Y and ~2 the 

symmetrized closure of 0~;. Let 0~ = O for i > 2. Put °/4/'0 = {1}, ~//'~ = {1}, and 

= F for i _-> 2, 

Then F / N ,  ~- H and F/N2 ~- G, where N~ denotes the normal subgroup of F 

generated by 9~ U ' -  • tA ~ .  

Applying Theorem 1 to (0~),~ and (°/~)~-0, we obtain a small-cancellation 

theorem for free products of groups. However, its hypotheses are more 

restrictive and its conclusion is weaker than in the known results (see, for 

example, [1], p. 278), so we shall not go into details. 

3 °. Small cancellation in HNN-extensions. Let H be a group, P and Q 

subgroups of H and ~ : P - *  Q an isomorphism. Let 

L = (H, t I t-~at = ~ ( a )  for a E P)  

be the corresponding HNN-extension. Let ,Y be a subset of L, let K be the 

normal subgroup of L generated by 5" and let G = L / K .  

We have H ~-- Fo/U for some free group F0 and a normal subgroup U of F0. 

Let F = Fo*(t)  and let o : F - - * L  be the extension of Fo--*H determined by 

p(t) = t. 

Consider the following families of sets (~) t~ l  and (~) i~o  in F. Let ~1 be the 

subset of U consisting of all non-trivial cyclically reduced words. ~2 is the 

symmetrized closure of the set ot words 

{t -1VltV211 Vl, V2 E Fo, p(Vl) ~ P, p(V2) E Q, 6p (V1) = p(V2)}. 

Let ~ be a subset of F such that p ( ~ )  = ~o, and ~3 the symmetrized closure of 

~ .  Take ~j = O for~i :> 3, 0/40 = {1}, °/9"1 = {1}, °/9"2 =/7o and ~ = F for i => 3. 

Then F/N1 ~- H * (t), F/N2 ~ L and F/N3 ~- G. Applying Theorem 1 to (0~),~1 

and (°/~)i>0, we obtain a small cancellation theorem for HNN-extensions of 

groups, which is, however, considerably weaker than the known results (see, for 

example, [1], p. 292). 
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4 °. Let F be a free group on free generators x, y. Let/-/1, U2," " be a sequence 

of wbrds in F and nj, n2 , "  • a sequence of positive integers. Let kl, k2 , "  • and 

11, l~,--- be two sequences of positive integers such that k, < I, for all i => 1. 

We define words Vt, V2 ,""  and sets of words ~ , 9 ~ 2 , . . .  inductively, as 

follows: 

Suppose that Vt, V2, . . . ,  V~_~ and ~ ,  ~2 , ' "  ", ~-~ have already been defined. 

Let V, be a shortest possible word such that U~ = L ,  ~ EL,  (mod N~_~) for some 

Lt. Let 
Ti:= xyk,+I Xykl +2.. . xyt,. 

Define the set ~'~ by 

~ . T~ V~ T,  V~ . . . .  Tf, Vq, • pj + n,q~ =O, r = l , 2 , . . .  . 

To each R '  ~ ~'~ we assign a reduced cyclically reduced word R" such that R"  is 

freely equal to P - ~ R ' P  for some P. Let ~ ' I : =  {R"J R ' E  ~ }  and let ~, be the 

symmetrized closure of l~'I. 

In a subsequent paper we intend to show that, if the sequences k~, ks, • • • and 

l~, I~, . . .  and the sets o~, i ~ 0, are suitably chosen then conditions (S) and (L) 

are satisfied. 

Then part (ii) of Theorem 1 implies that N ~  F and therefore the group 

G = G / N  is non-tri('ial. On the other hand, it is immediate from the construc- 

tion of G that TiN is the n~-th root of V~N in G since ~ contains the word 

T~,V? ~. Then (L~-~T~L)N is the n,-th roof of U~N in G. 

Therefore, for a suitable choice of the sequences U~, U2," • • and n~, n2 ,"  ", G 

will be a finitely generated non-trivial divisible group. 

§2. Van Kampen diagrams and restatement of the main results 

2.1. DEFINITION 2. Maps  in the plane. Let E 2 denote the Euclidean plane. We 

shall consider only piecewise linear subsets of E 2. If S _C E 2, then bd(S) will 

denote the boundary of S; the topological closure of S will be denoted by 

dos(S)  and the interior of S by int(S), compl(S) will denote Ez\S. 

A vertex is a point of E 2. An edge is a bounded subset of E 2 homeomorphic to 

the open unit interval. A region is a bounded set homeomorphic to the open unit 

square. A map  M is a finite collection of vertices, edges and regions which are 

pairwise disjoint and satisfy the following conditions: 

(i) If e is an edge of M, there are vertices P and Q (not necessary distinct) 

such that clos(e) = e U {P} U {Q}. 
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(ii) If • is a region of M, there are edges e~ ,e2 , . . . , e ,  in M such that 

bd(~)  = clos(el) O . . .  t3 clos(e,). 

An example of a map is shown in Fig. 4. 

The support, supp (M), of M is the set theoretic union of all its vertices, edges 

and regions. We write bd(M) instead of bd(supp(M)) and so on. Let Reg(M) 

denote the set of regions of M. 

DEFINITION 3. Paths. Every edge of M can be oriented in either of two 

directions. If e is an oriented edge, we denote by o(e) the initial vertex of e and 

by t(e) the terminal vertex of e. A path iz = (Vo, e~, vl, e2, " ", era, v= ) is a sequence 

of vertices v~ and oriented edges e~ such that o(ei) = vj-1 and t(ej) = vi, 1 < j _-< m. 

We use the notation o(/x) = v0 and t(/z) = v= for the initial and terminal vertices 

of p.. We identify a trivial path (v)  with the corresponding vertex v. If 

o ( / ~ ) = t ( / , )  we call /x a closed path or a cycle. The path /.t - I =  
e - i  (v=, e2t, • •., 2 , v~, e [  ~, v0) is called the inverse of / , ,  where e -~ denotes the edge 

e with the inverse orientation. The number m is called the length of /z .  We 

denote  J/~ J:= m ( " : = "  means "equal by definition"). 

If O < r < s < - _ m ,  the path v=(v , , r ,+t , . . . , e , , v , )  is called a subpath of /z. If 

r = 0 we say that v is a head of/x,  and if s = m we say that v is a tail of/x.  A 

path /x is said to be reduced if it does not contain subpaths of the form 

(v, e, v', e -~, v). If h and /x are paths and t (A)=  o(/x) then the product A/x is 

defined in the obvious sense. We call the p a t h / ,  simple if vi # v; for i # ]. 

c y 
e~ 

Fig. 4. 
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DEFINITION 4. Boundary cycles and paths. If • is a region of M, then a 

boundary cycle of * is a cycle a of minimal length which contains all the edges of 

bd(q)) and which does not cross itself in the sense defined in [1], p. 236. 

For example, in Fig. 5 the path 

a = (v0 ,  e l ,  or ,  e2, 1)2, e3, t~3, e31, 02, e4, 1)4, e4 q, l~2, es, 1)0) 

does not cross itself and therefore is a boundary cycle of q~, while 

fl = ( Vo, er, vr, ez, 1)2, e4, 1),, e Z r, Vz, e3, I)3, e3  r, 1)2, es, Vo) 

crosses itself and therefore is not a boundary cycle. 

In a similar way we define a boundary cycle of a connected component  of M 

and a boundary cycle of a connected component  of the complement to supp (M). 

Let a be a cycle and n an integer. We define a n as follows: 

(1) a ° is the trivial path o(a ) ;  

(2) am:= aa "-z for n > 0 ;  

(3) a n : =  (a-r)-"  for n < 0. 

We call a n the n-th power of a. 

A boundary path of a region • is a subpath of a power of a boundary cycle of 
q~. 

Thus, for example, according to our definition, in Fig. 5, y = (vl, e2, v2, e4, 1),) is 

not a boundary path of ~.  

DEFINITION 5. Normalized maps. A map M is said to be normalized if none 

of its regions has vertices of degree 1 on its boundary. 

For example, the map Mr in Fig. 6 is not normalized, while the map M2 is 

normalized. 

Throughout  this paper we shall consider only normalized maps whenever a 

new map is constructed we shall verify that it is normalized. 

/&. 
Fig. 5. Fig. 6. 
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It is easily seen that in a normalized map each boundary path is reduced. 

DEFINITION 6. Regular maps. A map is said to be regular if each of its edges 

is on the boundary of some region. 

Thus, for example, the map M1 in Fig. 7 is not regular, while the map M2 is 

regular. 

It is obvious that a regular submap of a given map is uniquely determined by 

the set of its regions. 

Let ~ and v be two paths in a map M such that o(/~) = o(v) and t(/~) = t(v). In 

an obvious way we define the notion "/~ is homotopic to v in M".  

2.2. Sets of paths in ranked maps. 

DEFINITION 7. Ranked maps. A ranked map ~t = (M, rank) is a map M 

equipped with a function 

rank: Reg(M)---> {1, 2 , . - .  }. 

DEFINITION 8. Equivalence of paths in a ranked map. Let .~ = (M, rank) be a 

ranked map. Let /~ and v be two paths in M such that o ( /~ )=o (v )  and 

t(/.Q = t(v). Let i >0 .  We say that/~ and v are i-equivalent, writing/~ - , v ,  if/~ is 

homotopic to v in the map M~ obtained from M by deleting all regions • of 

rank > i. 

DEFINITION 9. Sets of paths Br(k), ~ ( O ; j ) ,  .9(q~; c), ~ ( ~ ; c ) .  Let d~ = 
(M, rank) be a ranked map. Let • be a region in M of rank k. Let j -> 1 be an 

integer, and let d" = ( d l ,  d l , - . - ) ,  c = (cl, c 2 , " . )  be sequences of numbers, 
s = 1 , 2 , . . . .  

We define sets of paths Bra'S(0), Br~')(k), ~ ' ) ( ~ ; i ) ,  ~ ' ~ ( ~ ;  c), ~ ' ) ( ~ ;  c) 

for k = 1, 2 , . . .  inductively, as follows. 

(1) The set Br~ ' (0)  consists of all trivial paths in M. 

M l 

Fig. 7. 

N2 
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Now let us assume that the sets Br~')(h) for h = 0, 1,-.  ", k - 1 have already 

been defined. 

(2) A path # in M belongs to ~ ' ) ( q ) ; j )  if and only if 

(or) # is a boundary path of 

and there exist 

(13) simple paths or, • E Br~'~(h), where h = m i n ( k , / ' ) - 1  (recall that rank 

(q)) = k); 

(~/) a region ~ ,  • ~ (1), of rank j, 

(8) a boundary path v of • such that 

(e) / . t -h i rer  -1 (see Fig. 8). 
( d ' )  . (3) A path ~ in M belongs to ~¢~ (~,  c) if and only if 

(a) ~ is a boundary path of ~ ;  

(13) there is a factorization ~ : = ~ l ~ " ' ~ m  where each ~, belongs to 

~ ' ) ( q b ; f ( e ) )  for some f (e) ;  

(~/) card{e [ l ( e )  = i}_-_ c, (i = 1, 2 , . . .  ), where c = (¢1, c2," • • ) (see Fig. 9). 

(4) A path r / in  M belongs to ~ ' ) ( q b ;  c) if and only if every subpath r/0 of r/ 

belongs to ~ ~q~; c). 

(5) A path v in M belongs to Br~')(k) if and only if v = ~,ltrv~, where 

v~, v: E Br(~')(k - 1) and either or is trivial or or is a boundary path of some region 

(I) of rank k such that 

(or) or does not contain a boundary cycle of (I); 

(13) tr E ~,~(a')l'~'~ ~'-', d k) (see Fig. 10) (note that this is the only point where the 

dependence on the d " s  actually appears!). 

O' f 
Fig. 8. 
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Fig. 9. 

Fig. 10. 

In the sequel we shall fix the sequences d s as follows: 

s - 1  

(L0) d ' =  ~ 2"lY-heh + es, S = 1 , 2 , . . .  
h ~ l  

and omit the upper index (d ').  We shall also omit the lower index ~ whenever it 

is clear from the contex to which ranked map we are referring. We thus write 

Br(k)  instead of Br~')(k), and so on. 

In the following two lemmas we collect some properties of the sets of paths 

defined above which we need later on. 

L E ~  1. (a) The sets of paths Br(k),  ~ ( ~ ; 1 ) ,  ~ ( ~ ;  c) and ~(qb; c) are 
closed under taking inverse paths. 
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(b) ~ ( ~ ;  c) is closed under passage to subpaths. 

(c) Br(k - 1) C_ Br(k)  for k >- 1. 

(d) Br(k)  is closed under passage to subpaths. 

(e) Let .At = (N, rank) be a ranked map such that N is a submap of M and for 

any dp~ Reg(N),  rank~(~)  = rank~(~).  Then Brx(k )C_Br~(k )  and, for any 

~ Reg(N),  ~ (~;  ~) _C ~ (~ ; / ) ,  J.~ (~;  c) _C J.~ (~;  c), ~ x  (qb; c) _C ~.~ (~; c). 

PROOf. Parts (a), (b) and (c) are obvious. Since a ~,/z in .N implies A --,/z in 

part (e) follows by induction on k and rank(~). Let us prove part (d). For 

k = 0, Br(0) consists of trivial paths and the assertion is obvious. Let k > 0. Let 

v ~ Br(k).  Then ~, = v,~rv2, where v,, v2 ~ Br(k - 1) and o-, if non-trivial, is a 

boundary path of some region • of rank k satisfying conditions (5) (e0, (13) of 

Definition 9. If ~ is a subpath of v then there exists a factorization 

'r = 'r~p'r2, 

where ~-~(p~, ~'2), if non-trivial, is a subpath of v,(tr, 1,2); hence "rl, 'r2 ~ Br(k - 1) by 

the induction hypothesis and p, if non-trivial, is a boundary path of • such that p 

does not contain a boundary cycle of ~ .  By part (b), (5), (13) implies p 

R'(~;  ~_~ 2.13~-te~ + e~) (recall that, by (L0), d ~ = Y.~'_~ 2.13~-~ei + e~). Therefore 

~-~ Br(k).  This proves the lemma. 

LEM~A 2. Let ! >- 0 and assume that, for any region II in M of rank <= 

clos(II) is simply-connected. I f  for Iz E Br(I) there exists a factorization I~ = 

/zalz~lx3 such that t(/~,) = o(/.t3) then Iz,lz3 E Br(l). 

PROOF. We proceed by induction on l. If l = 0, then ~ is a trivial path and 

there is nothing to prove. Let ! > 0. We have/z  = v,~rz,2 where v,, z,2 E Br(l - 1) 

and tr, if non-trivial, is a boundary path of some region • of rank ! such that tr 

does not contain a boundary cycle of • and tr E ~(~;E~?.~ 2.13~-~ej + et). We 
have to consider several different possibilities. 

Case 1. #1~2 is a head of vl. 

Then for some ~'1, vl =/z~p.2~'l and p,3 = ~'~o'v2. We have t(/~) --- o(/z3) = 0(~'~) 

and then, by the induction hypothesis, ~ I~ '~EBr ( I -1 ) ;  hence p.d.t3 = 

/.tl~'~o'v2 ~ Br(l). 

Case 2. #t2/~3 is a tail of v2. 

Then for some z2, v2 = ~'2/zW.3 and /z~ = v, wr2. As in the previous case, we 

obtain ~'3p.3 ~ Br(l - 1) and/-td~3 = v, trr2/.t3 E Br(l). 
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Case 3. /.t, is a head of v~ and /~ is a tail of u:. By Lemma l(d), 

/z,,/x3 ~ Br(l - 1), hence /~ / .~  ~ Br(I). 

Case 4. /~, is a head of u~, v~ is a head of/~/~2 and v2 is a tail of/~3. 

Then for some ~'3, 1"4 and ~'5, v, = /z~3,  tr = ~'41"5, #3 = 1"5v2. By Lemma l(d), 

/z, E B r ( l - 1 )  and by Lemma l(b), if r5 is non-trivial then ~-s~ 

~ ( ~ ;  E~2~ 2.13~-~e~ + e~). Then /z~/z3 = tz~z~v2 ~ Br(l). 

Case 5. va is a head of/z , , /x3 is a tail of u2 and v2 is a tail of !~21.~3. 

This case is similar to Case 4. 

Case 6. v, is a head of /z, and u 2 i s a t a i l o f / z 3 .  

Then for some ~'~, 1"7, ~, = v,~'6, tr = I"6/x277,/23 = ~'7v2. Let  us show that/~2 is 

trivial. Indeed, if /~z is non-trivial, then tr is non-trivial. Then since o(tz2)= 

t(p.~) = o(p.3)= t(/z2), /22 is a closed boundary path of ~ .  Since clos(Xt ') is 

simply-connected, every non-trivial closed boundary path of • contains a 

boundary cycle of ~ ,  a contradiction. Hence /22 is trivial and then /21/~3 = 

~/22/23 E Br(l). 

All the possibilities have been exhausted. The lemma is proved. 

2.3. Van Kampen diagrams. 

DEFINITION 10. A van Kampen diagram over a group G is a map M and a 

function L assigning to each oriented edge e of M, as a label, an element L(e)  of 

G such that L(e- ' )=  L(e)  -~. 

We shall consider only van Kampen diagrams over free groups. We always 

assume that the label of each oriented edge is a generator or the inverse of a 

generator  (from a fixed set of generators). 

If Iz=(vo, el, v l , . . . ,v , , - , ,e , , ,v , , )  is a path in M, we define L ( / z ) : =  

L(eOL(e2). . .  L(e,,). 
Let 5e be a symmetrized subset of F. A van Kampen diagram is called an 

5e-diagram if, for any boundary cycle /.~ of any region • in M, we have 
L ( ~ ) ~  ~e. 

The application of van Kampen diagram is based on the following lemma ([1], 

p. 237). 

LEMMA 3. Let U be the normal subgroup of F generated by 5e. A non-empty 
reduced word W belongs to U if and only if there is a connected simply-connected 

5e-diagram such that for some boundary cycle a of the underlying map we have 
L(ot) - W. 
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Let (9~),~., be a family of disjoint symmetrized subsets of F;  let 9~ = U,~l ~. 

and let N be the normal subgroup of F generated by ~. Let (M, L) be an 

~-diagram. We define the rank of a region • in M as follows: 
rank(O) = i if and only if, for some boundary cycle p of ~,  L(p) ~ ~.. Since ~, 

is symmetrized we then have L(p ' )E  ~. for each boundary cycle p' of ~.  We 
obtain thus a ranked map d¢ = (M; rank). 

DEFINITION 11. Minimal @l-diagrams. For a ranked map d~ = (M~ rank) we 

define the generating polynomial gen(d~)=Z,~-i a~t' ~Z[t] ,  where a, is the 

number of regions of M of rank i. 

We introduce a nonarchimedian order on the ring of polynomials Z[t], taking 

n < t  for a l l n E Z .  
Let W be a non-trivial reduced word in N and let (M, L) be a connected 

simply-connected ~-diagram such that L (a )  -- W for some boundary cycle a of 

M. Then we call (M,L)  an 9~-diagram for W. Let d~ =(M~rank) be the 

corresponding ranked map. We say that (M, L) is a minimal ~-diagram for W if, 
given any other ~-diagram (Mo, L) for W with the corresponding ranked 

map d/.0 = (Mo, rank), we have gen(d/) < gen(d~o). 
For a minimal 9~-diagram, there is a close connection between the sets of 

paths introduced in Definition 9 and the sets of words introduced in Definition 1. 

We have 

I .~M~ 4. Let (9~),~1 be family of disjoint symmetrized subsets of the free 
group F and let (~),~o be a family of subsets of F satisfying condition (L). Let W 
be a non-trivial reduced word in N = ( Ui~l ~,)F and (M, L) a minimal Ui~I R~- 
diagram for W. Let • be a region in M of rank k >= 1, p a boundary cycle of • and 

t~ a subpath of p. 
(a) If  ~ E ~ ( ~ ; j )  then L(t~)E ~(L(o) ; j ) ,  j _-> 1. 
Co) If I~ ~ ,.~(~; c) then L(t~) E .,~(L(o); c). 
(c) If  I.~ E ~'(~; c) then L(lz) E ~(L(p) ;  c). 
(d) If t~ EBr(k)  then L(#)EoW'k. 

I~ooF. We proceed by induction on k. If k = 0 then parts (a), (b), (c) are 

vacuous. If p. E Br(0) then/~ is a trivial path and then L ( p . ) - 1  E *W'o, by (L). 

Therefore, part (d) holds for k =0.  Let k >0.  We start with part (a). Let 

/z ~ ~ (~ ; j ) .  Then, according to Definition 9, there exist paths v, cr,~" and a 

region • of rank j satisfying (a), (13), (~/), (8), (s) of Definition 9, (2). 

Since /.t is a subpath of p, we have p = pll~p2 for some paths Pl, p2. Then 
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L(p) - L(pl)L(Iz)L(p2). Since cb is of rank k, we have L(p) E ~k. Thus, L(pL) is 

a subword of a relator L(p)•  0~ . 
Since, by (8), v is a boundary path of * ,  there is a boundary cycle to of • such 

that, for some m _-> 1, to" = vto'. By (~/), r ank(~)=j ,  therefore L(to)E ~ and 
L(v) is an (initial) subword of L(to) ' .  By ([3), o , ~ E B r ( h )  where h =  
min(k , ] ) -1 .  Then, by the induction hypothesis, L(o), L(7)E ~l/'h. 

It is an immediate consequence of Definition 8 that if ~1 and ~2 are two paths in 

M such that ~:,~,~2 then L(~I)=L(~2) (modN,), where N, is the normal 

subgroup of F generated by 9~, U 0~2 O.-"  U ~ .  Therefore (e) implies 

L(tz ) = L(o)L(v)L(¢) -~ (mod Nh). 

Now let us assume that k = j. We shall show that if the word 

L (cr)L (to)-'L (o)-'L (/z)L (p2)L (p,) 

(after reducing) belongs to Nh = Nk-, or is conjugate modulo Nh to a relator 
T E ~k then the ~-diagram (M, L) for W is not  minimal, in a contradiction with 

our assumption. 

In both cases we can construct an ~-diagram (Mo, L) for 

L(o)L(to)-'L(o)-~L(Iz)L(p2)L(p~) such that for the corresponding ranked 

map J¢~ = (dr0, rank) we have gen(df0) < 2t k. 

Since o- is simple and • ~ ~F (see ([3) and (~/)), making a cut through o and 
deleting the regions cP and xF we obtain an ~-diagram b~/(see Figs. 11, 12). 

The boundary cycle of the hole is o-'to-ltr"-~/,p2p~, where L(o')---L(tr")- 
L(o). We can therefore "fill in" the hole by the 0~-diagram (M0, L), obtaining a 
new ~-diagram (M~,L) for W. Let J/~ =(M~,rank) be the corresponding 
ranked map. It is clear that 

Fig. 11. Fig. 12. 
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gen(d~,) = gen(dQ - 2t k + gen(d~0) < gen(d~) 

which contradicts the minimality of (M,L). We have shown that all the 
requirements of Definition 1 with A, U1, U2, R, B, S, Z1, Z2 substituted by L(/~), 
L(p~), L(p2), L(p), L(v), L(to), L(or), L(T) respectively, are satisfied. Therefore 
L( I~)E~(L(p) ; j ) ,  i.e. L(/z) is a j-piece of L(p). Part (a) of the lemma is 
proved. Parts (b) and (c) immediately follow from Definition I and Definition 9. 

Now let /~ •Br(k).  Then /~ =/.~orp.2, where /z~, /~2~Br(k-1)  and or, if 
non-trivial, is a boundary path of some region xt, of rank k such that or does not 
contain a boundary cycle of • and or E ~ ( g ' ; ~ E l  2-13k-Jej + eL). 

By the induction hypothesis, L ( / ~ ) E  °/4rk_, and L(/~2)E °/Vk-l. If or is trivial 
then, by condition (L), 

L(iz ) -- L(tz,)L(iz~) E ~V'~. 

Let or be non-trivial. Then or is a subpath of some boundary cycle to of ~ .  By 

part (c), 
k - I  

i=1 

Applying condition (L) we obtain 

L (Iz ) -- L (Iz,)L ( or )L (tz:) E ~k 

because L( to)E ~k. This proves part (d). 
The lemma is proved. 
Now we are able to translate conditions (L) and (S) into a geometric condition 

concerning ranked maps. 

LEMMA 5. Under the assumptions of Lemma 4, let, in addition, (~),** and 
(~) ,~o satisfy condition (S). Then: 

(a) p ~  J(~;Y~=,S'13k-'e,); 
(b))'or any h > k, p~.J(~;F.~2~ 7"13k-Je~ +6ek +e,) .  

PROOF. This is an immediate consequence of condition (S) and Lemma 4(b). 

2.4. Restatement of the results. 

Condition (So). Let d g =  (M~ rank) be a ranked map. If, for every k -  1, 
every region ~ in M of rank k and every boundary cycle p of ~,  we have 

(et) p ~  ~¢(~;E~_~8.13k-'es), 
(13) for any h >k ,  p~.~C(cP;~,~2~7.13~-~e~ +6e~ +eh), 

then we say that d/ satisfies condition (So). 
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THEOREM 3. Let d~ = (M, rank) be a connected simply-connected ranked 

map satisfying condition (So) and having a reduced boundary cycle a. 

(i) There exist: 

(1) a subpath [3 of ~t; 

(2) an integer i >- 1; 
(3) a region ~ in M, of rank i with a boundary cycle to; 

(4) a boundary path y of ~;  

(5) simple paths o', ~" E Br(i - 1) 
such that [3 ~ ,_~ or-lyr and either to = y8 where ~ E ~ ( ~ ;  E~-~ 5.13'-Jei + 4ei) (see 
Fig. 13) or ~, = to'~to', with m >= 1 and to = to'to". 

(ii) There exist: 

(1) a subpath 71 of ct; 

(2) an integer k >= 1; 
(3) a region ~ in M of rank k;  

(4) a boundary cycle n~ of 

such that either ~ E ~ ( ~ ;  ~'~1 4"13k-Jes) or, for some h > k, 

~: E ~ ( ~ ;  E~-~ 3.13k-Jei + 2ek + eh) (see Fig. 14). 
(iii) The number of regions of M is effectively bound in terms of the length of ot 

and the maximum of lengths of boundary cycles of regions of M. 

DEDUCTION OF THEOREM 1 FROM THEOREM 3. Let (M, L)  be a minimal 
connected simply-connected ~-d iagram for W with a boundary cycle a such 

Fig. 13. 

Fig. 14. 
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that L ( a ) ~  W and let .~/= (Mr, rank) be the corresponding ranked map. By 

Lemma 5, .g/ satisfies condition (So). We apply Theorem 3 to ~ .  

(i) Take A : =  L(/3), B : = L ( y ) ,  R:=  L(to), ZI :=  L(tr), Z2:= L0"), U:= L(8), 
R ' : =  L(to'), R" :=  L(to"). 

Then A is a subword of W ~ L ( a ) .  The relation f l ~ H ~ r - l y r  implies 

A = Z~IBZ~ (modN,_,), hence A-~Z~BZzEN~_, .  If to = y~5 then R =-BU 

where, by Lemma 4(c), 

(,_1 t U E ~o R ; ~ 5.1T-Jes + 4e~ . 
j=l 

Since to is a boundary cycle of ~,  R - L ( t o ) E ~ . ,  where /=rank(D).  If 

~' = tomto, then B - R " R '  where R -- R 'R"  and m _>-- 1. 
This proves part (i). 

(ii) Take C: = L(n),  S:= L(r/~:), V:= L(~). 

Then C is a subword of W and S - CV. Since ~ is a boundary cycle of ~ ,  we 

have S - L01~:) E ~k where k = rank(~). By Lemma 4(c), if 
~: E ~'(~;  E~_~ 4.13k-Jej), then 

V E ~ ( S ; 2 4 " 1 3 ~ - ' e j ) ,  
j=l  

and if, for some h > k, ~ E ~ ( ~ ;  E~2~ 3-13k-Jej +2ek + eh)then 

k 0 
This proves part (ii). 
(iii) If ~ = I..1,,~ ~ is finite, then the lengths of boundary cycles of regions of 

M do not exceed some constant i0 depending only on ~. Then, by part (iii) of 

Theorem 3, the number of regions of M does not exceed some constant 

effectively depending on I W I = I a I and 10. Therefore, up to a homeomorphism, 
there is only a finite number of possibilities for such an ~-diagram (M,L). 
Hence, given a word IV, we have a finite procedure to decide whether or not 
W E N .  

This proves part (iii). 

REMARK. It is sufficient to prove Theorem 3 in the case when M is regular 

and int(M) is connected. 

Indeed, given a reduced boundary cycle ot of M, we can find a factorization 

c t  = otlot2Otoaflot3 (see Fig. 15) with the following properties: 
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o~.,~ ~ 
H~ 

Fig. 15. 

(1) ao is a boundary cycle of a submap M0 of M such that Mo is regular and 

int(Mo) is connected; 

(2) aza3 is a reduced boundary cycle of a submap M~ of M; 

(3) Reg(M)= Reg(M0)U Reg(Ml) (cf. [1], p. 247). 
Let .g  = (Mr,, rank) be the ranked map such that rank~ (O)= rank~ (q~) for 

each region • in M,, i = 0,1. 

If 2/ satisfies (So) then, in view of Lemma l(e), 2/o and 2/~ also satisfy (So). 
Using Lemma l(e), we see that if parts (i), (ii) of Theorem 3 hold for 2/0 and 

ao, they hold also for 2/ and a. 

In part (iii) we use induction on the length l a l  of the boundary cycle a. 
Since [ohot3[ < [ a  I, by the induction hypothesis, the number of regions of M, 

is effectively bounded in terms of [a,a31 and 10. If Theorem 3 holds for 2/o then 
the number of regions of Mo is effectively bounded in terms of [ ao [ and lo. Then 

the number of regions of M is effectively bounded in terms of l a[  and In. 

03. Ordered 2-ranked maps and their derived maps 

3.1. For technical reasons we modify the notion of a ranked map, and 

introduce the notion of an ordered n-ranked map. 

DEFn, aTIOS 12. Let n--> 1. An ordered n-ranked map is a triple 2 / =  

(M, {9,, 3.2,"" ", 3.,}, < ) consisting of 

(1) a regular map M such that int(M) is connected; 

(2) a partition of the set of regions of M, 

Reg(M) = ~1 U ' ' -  U ~n, ~ / f l  ~ = @ for i ~ j, 

such that 3 . ~  O; and 
(3) a relation of linear order " < "  on 32 U - - .  U 3", such that if q)E ~ ,  
E ~ and i < ] then q) < • in this order. 
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Given a ranked map (M, rank) such that M is regular and int(M) is connected 

we can form an ordered n-ranked map (M, {3"1, . - -, 3",},<), where n = 

max{rank(C) I ¢' E Reg(M)}, taking g : =  {O [ ,I~ E Reg(M), rank(,I~) = i} and in- 
troducing some linear order " < "  on the set 3"2 U - - .  U 3-~ such that • < ~ if 
rank(O) < rank(V). 

We need some more definitions. 

DEFINrnoN 13. Dista.nce between regions. For any two regions • and • of M 

contained in the same connected component of int(M), the distance dM (0, ~), 
or simply d(tl,,V), is defined as the minimal m such that there are regions 

IIo=O, I I i , . . . , I I ,_ , ,  II,, = ~  and edges e, , . . . ,em with e, _Cbd(II,- 0 and 

ej C_bd(II,) for i = 1 , 2 , . . . , m .  By definition, d((I),O)=0. If • and • are 

contained in distinct connected components of int(M) then d(O, ~ )  is not 

defined. 

For example, in Fig. 16 d(O,, 4)3)= 2 while d(V:, ~ )  is not defined. 

The distance between regions satisfies the metric inequality 

d(tl), ~ )  =< d(O, l-I) + d(II, *).  

If d(O, ~ ) =  1 then we call • and • neighbouring regions. 

DEnsrnoN 14. Left-hand-side and right-hand-side factorizations of a path. 
Let v be a path in M. We say that the region • is to the left of v if v is a subpath 

of a positively oriented (in the usual sense) boundary cycle of ¢, (or of its power). 

If v is a subpath of a negatively oriented boundary cycle of ,I~ then we say that ,I~ 
is to the right of v. 

For example, in Fig. 17, • is to the left of the paths (v:, el, v2, e2, v3, e3, v~) and 

~8 

v~ e 7 

j ,  

o~ 

v, 
i /  

5 

-3 5 

! 

\ 

Fig. 16. Fig. 17. 
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(I)2, e2, 1)3) and • is also to the right of (v2, e2, t)3), but • is not to the left of the 

path (01, el, 02, e6, v6) because this path is not a boundary path of ~.  
If clos(~) is simply-connected, then • cannot be both to the left and to the 

right of some boundary path of clos(~) (recall that all the maps considered in this 
paper are normalized (see Definition 5)). We may therefore say that a boundary 
path of • is positively or negatively oriented. 

If II is a connected component of the complement to M and v a path in M, 

similar definitions yield the notions "[I is to the left of v". "II is to the right of 

v", "v is a positively (negatively) oriented boundary path of W'. 
Let/~ be a path in M. Traversing/z from beginning to end and checking which 

regions or connected components of compl(M) lie to the left of non-trivial 

subpaths of/~, we obtain a sequence 

(1) A,(ff), A2(tt), • .-, An, (~) 

of regions of M or connected components of compl(M), and a factorization 

(2) = 0 , )  

such that A~(/z) is to the left of h,(/~) and each h,(/~) is non-trivial, i =  

1 ,2 , . . - ,m.  For minimal m, the sequence (1) and the factorization (2) are 

uniquely defined. We denote this minimal m by I(/~) and we call the correspond- 

ing factorization (2) the left-hand-side factorization of/~ in M. We stipulate 

that, for a trivial path/z  = (v), l ( /z)= 0. 
For example, in Fig. 17, for the path 

= (02, ex x, u1, el, 02, e6, 1)6, eT, UT, es, th, el, v2, e2, 03, e51, us, e4 t, 04, e3 i, 03, e51, US), 

we have l( /z)= 4 and 

AI(/*) = eompl(M), A2(t*) = ~,  

= eV, vl), A2(p) = (vt, v2), 

~'3(~ U[S ) --~' (I)2, e6, v6, eT, vT, es, vl, et, v2, e2, v3), 

A,(p)  = (v3, e~ -~, v,, e~ ~, v4, e3 ~, v3, e~ ~, vs). 

Replacing "left" by "right" we define r(/~), the sequence 

(3) V,(/~), P2(/£),'" ", V,,~)(tz), 

and the right-hand-side factorization of p in M 

(4) ~ = p ~ ( ~ ) ~ ( ~ ) - - "  ~o,)(/.t). 

= * ,  
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3.2. Elementary maps. 

DEFINrnON 15. Let M be a regular map and • a fixed region in M. We call M 

an elementary map over • if: 
(1) For each q~ E Reg(M), W # O, we have d(O, W) = 1. 
(2) Every regular submap of M containing • is simply-connected. 

For example, maps M~, M2, M3, Ma in Fig. 18 are elementary over O1, 02, O3 
and O4 respectively, but M1 is not elementary over • and Ms, M6 are not 
elementary over O5 and O6 respectively. 

LEMMA 6. Let M be an elementary map over • and qt a region of M distinct 

from 0.  Then 

(a) bd(O)f'l bd(W) contains at least one edge and is connected. 

(b) bd(~)N bd(M) contains at least one edge and is connected. 

(c) There is a positively oriented boundary cycle (p.o.b.c.) a-l"y-l[38 of • such 

that a = a ( * )  describes bd(O)rl bd(q') and fl = fl(W) describes bd(~t')f3 bd(M) 
(see Fig. 19). 

M, 

Fig. 18. 
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Fig. 19. 

(d) I f  ? = ~/(xF) is non-trivial then, for some region ~, in M, Y, ~ ¢P, we have 

(e) I f  6 = 6(~) is non-trivial then, for some region II in M, II ~ @, we have 
8(,I,)  = v ( n ) .  

PROOF. (a) bd(q~)f'l bd(q p) contains at least one edge because d(q~,~)= 1, 
and it is connected because the set clos(O U xF) is simply-connected by Definition 
15. 

(b) Let N be the regular submap of M containing all the regions of M except 
g'. By Definition 15, N is simply-connected; therefore bd(~)N bd(M) contains 
at least one edge, for otherwise • would be contained in a bounded connected 
component of compl(N), which is impossible. Further, the complement of 
clos(q' O compl(M)) is connected because d(2, q~) = 1 for all 2 E Reg(M), 2 ~ q~. 
Hence bd(q p) N bd(M) is connected. 

(c) is evident, because a -~ and /3 have no edges in common. 
(d) Consider the left-hand-side (1.h.s.) factorization ~/= A1(~,)- • • Ae (~,) where 

p = l(y) and let A~(y),...,Ap(3,) be the corresponding sequence. Since a 
describes the whole of bd(O)f3 bd(~) and /3 describes the whole of bd(O)N 
bd(M), we have Ai(~,)~O, At(~,)~compl(M), i = 1 ,2 , . . . , p .  We show that 

p=<l.  
Indeed, if p > 1 and Ap-~(T)= Ap(?), then there is a hounded connected 

component (b.c.c.) of compl(clos(Ap (~/))) such that A N ~ = O (see Fig. 20). Then 
clos(@ U Ap (y)) is not simply-connected, which is impossible by Definition 15. 

If p > 1 and Ap-l(),) ~ Ap (~,) (see Fig. 21), then Ap (~/) is contained in the b.c.c. 
of compl(clos(@ U ~ U A~-I(~,))), which also contradicts Definition 15. 

Therefore, p _-< 1. Since ~/is non-trivial we have p = 1. Denote A,(y) by ~. Let 
us show that ~, = 8(~). 

The path ~, is a boundary path of ~ satisfying the following conditions: 
(1) o(~/) is the unique vertex of y that belongs to bd(M); 
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Fig. 20. 

Fig. 21. 

(2) t(y) is the unique vertex of y that belongs to bd(~); 
(3) ~ is to the left of y (see Fig. 22). 
The path 8(~) is uniquely determined by properties (1), (2), (3), and therefore 

8 ( x )  - = 

Part (e) of the lemma is proved in similar fashion. 
The lemma is proved. 

3.3. Transversals and projections in an elementary map. 

DEFINITION 16. Left and right transversals from a boundary vertex. Let M be 
an elementary map Over a region ~. For any vertex v ~ bd(M) we define two 
paths LT(v; qb) and RT(v; ~)  in the following way: 

(1) If v E bd(O), then LT(v; ~)  := v, RT(v; ~)  := v, the trivial path (see Fig. 

23). 
(2) If for some region • in M, ~ ,  we have v =o(y(xt')), then 

L T ( v ; ~ ) : =  y(xtt), RT(v ;O) :=  y(~)  (see Fig. 24). 

(3) If for some region ~ in M, ~ ~,  we have fl(~) =/~v, where p. and v are 
non-trivial paths, then LT(v; ~ ) := /~- IV(~  ), RT(v; ~ ) : =  vS(~) (see Fig. 25). 
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Fig. 22. 
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Fig. 23. 
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Fig. 25. 

We call LT(v; ~) the left transversal from v to • and RT(v;cb) the right 
transversal from v to cb. 

DEFINmON 17. Left and right projections of a vertex. Under the assumptions 
of the previous definition, we define two vertices lpr(v; ~) and rpr(v; ~) as 
follows: 

lpr(v; ~) := t(LT(v; O)), rpr(v; O) := t(RT(v; cb)). 
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We call lpr(v; ~P) the left projection of v to ~P and rpr(v; <b) the right projection of v 
todP. 

Thus, lpr(v; ~)  and rpr(v; ~)  are distinct only in case (3) of Definition 16 (see 
Fig. 26), while in case (1) we have v = lpr(v; ~)  = rpr(v; ~)  and in case (2) we 
have 

lpr(v; ~)  = t(~,(~)) = rpr(v; ~). 

DEFINITION 18. Left and right projections of a boundary path. Let /~ be a 
boundary path of M. Then there is a uniquely determined boundary path 
lpr(/~;~) of • such that 

(1) o(lpr(/~ ; ~)) = lpr(o(/~); ~), t(lpr(/~ ;~)) = lpr(t(/~); (I)); 
(2) lpr(/~ ; (I)) is homotopic to the path LT(o(/~); ~)-1/~ LT(t(/~); tb) in the map 

M0 obtained from M by deleting the region cb (see Fig. 27). The path lpr(/.t ; ~) is 
called the leg projection of i~ to ¢P. Replacing "left" by "right" we define the right 
projection rpr(/~;q~) of /z to q~. 

DEFINITION 19. Projection of a boundary path. Let/z be a boundary path of 
M. If/z is either trivial, or non-trivial and positively oriented, then we define the 
boundary path pr(/~;4~) of • by the following two conditions: 

(1) o(pr(/~ ;q~)) = lpr(o(t~); ~), t(pr(~,; q~)) = rpr(t(tx); q~); 

V 

Fig. 26. 

Fig. 27. 

Oil4) 
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(2) pr(/z ;~)  is homotopic to the path LT(o(/z); ~)-~/x RT(t(p.); ~) in the map 
M0 obtained from M by deleting the region • (see Figs. 28 and 29). 

If t* is a non-trivial negatively oriented boundary path of M then 
pr(tz ; ~ ) : =  pr(/z-~; ~)-i (see Fig. 30). We call pr(/x ; ~) the projection of/z to * .  

For example, in Fig. 31 for the path tz = (v0, el, vl, e2, v2) we have pr(/z ; ~)  = 
(t)3, e3, I~4, e4, us, es, t~3, e3, v4, e4, vs, es, v3). 

t/M) 

Fig. 28. 

Fig. 29. 

o(M1 

pr {p; @ I 

Fig. 30. 

v, v. e2 ~ e~ 

Fig. 31. 
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DEFINITION 20. Shadow of a boundary path. Let /z  be a boundary path of M. 

We define the shadow Ofl~ with respect to • as the minimal submap S(/~ ; ~ )  of M 
containing the path /z and all the regions W in M, ~ ~,  such that ot(~) or 
a ( ~ )  -~ is a subpath of pr ( /x ;~)  (see Fig. 32) (cf. Lemma 6). 

In the next lemma we collect some simple facts about projections, to be 
needed later on. 

LEMMA 7. Let M be an elementary map over a region cb and ix = I.t~l-~2 a 

non-trivial positively oriented boundary path- (p.o.b.p.) of M. 

(a) pr(/z ; ~)  is a non-trivial p.o.b.p, of ~.  

(b) lpr(p,; ~)  = lpr(/~,; ~)lpr(p,2; ~).  
(c) rpr(/~ ;4~) = rpr(/~,; ~)rpr(/~2; ~).  
(d) pr(/z ;~ )  = lpr(/~; qb)pr(/~2; ~)  = pr(/~; ~)rpr(/~2; ~ )  

= lpr(/~l; ~)pr(t(/~,); ~)rpr(/~2; ~).  

(e) If  I~ is on the boundary of ~,  then pr ( /~ ;~ )= /~ .  
(f) If  I~ is a boundary cycle of M then there are a boundary cycle to of • and a 

boundary path ~" of dp such that pr(p~ ; qb) = err = zto. 
(g) Assume that ix is a subpath of [3(~) for some region • in M, ~ ~ dp (see 

Lemma 6). 
i.t is a head of RT(o(/x);O) if and only if t~ is not a head of f l(~) and then 
RT(o( /~) ;~)=/zRT(t ( /z) ;qb)  (see Fig. 33). Similarly, i.t-' is a head of 

LT(t(/.t);O) if and only if tz is not a tail of [3(~) and then LT(t ( /z ) ,O)=  
p,-'LT(o(/~); ~).  

Fig. 32. 

R • 

Fig. 33. 
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The proof of all parts of the lemma is immediate and is therefore omitted. 

3.4. Layers in an ordered 2-ranked map. 

DF_~mON 21. Let d / =  (M, {3-1, 3-2}, < ) be an ordered 2-ranked map (see 
Definition 12). For any region • • 3"2 and h > 0, we define the set of regions 
~ ( O ) ,  or simply ~h(c}), as follows: 

E ~"(O)  if and only if the following holds: 
(1) dC2, 0 )  = h;  
(2) for any xPE 3-2, d ( ~ , O ) ~ d ( 2 , ~ ) ;  
(3) if for some • E 3"2 we have d(E, 0 ) =  d(E, xP), then O-< xt, in the given 

order relation on 3"2. (This is the only point at which the order relation on 3"2 is 
used.) 

Let . ~  (0), or Le(O), be the union of ~"  (0) for all h _>-0. 
For example, consider the map M in Fig. 34, where we have taken 3"2 = 

{O1, 02, Os} and O, < O2 < O3. Here any region • E LeJ (0  0 is indexed by i]. 

LEMMA 8. (a) Reg(M)= U ~  ~(O). 
(b) If 0,  ¢g E 3"2 and • ~ q' then .g'(O) t') .~(~) = 0 .  

(c) For any • E 3"2, -L~°(O) = {0} and .~h (0) C_ 3",, h > O. 

PROOF. Obvious. 

LEMMA 9. Let ~P, • E 3"2, • < ~ ,  let F E ~(O), A E ~ ( ~ )  and assume that 

d(F,A) = 1. Then 
d(A, ~)  < d(r, o) _--- d(A, * )  + 1. 

Fig. 34. 
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PROOF. By condition (2) of Definition 21 and the metric inequality, 

d(r, 4)) _- d ( r , * )  --- d(r, A) + d(A, ~t,) _--- d(A, ~)  + 1. 

On the other hand, since A E .~(q'), we have 

d(A, qt) __< d(A, ~). 

Since • < q', it follows from condition (3) of Definition 21 that d(A, ~ )  = d(A, ~)  
cannot possibly be true, and so d(A, ~ ) <  d(A, ~). Then 

d(A, ~ )  < d(A, ~)  < O(A, r )  + d(r, ~)  _-< d(r, ~)  + 1, 

therefore d(A, ~)  -< d(F, ~). 
"[he lemma is proved. 

DEFn~rnor~ 22. For any cb ~ 3"2 and h >0 ,  let C~(~), or simply Ch(~), 
denote the regular submap of M such that Reg(C h (~)) = 

A°°(cb) t.J .~l(cb) U . . .  U .~h (~). Let Ca (~), or C(~),  denote the regular submap 
of M such that Reg(C(~))=  ~(~) .  

For example, in Fig. 35, in the situation in Fig. 34, we have indicated the 
submap C2(~1). 

LEMMA 10. Let oDE 3"2, h >0 ,  and E E.~h(dP). Let • = IIo, II~,...,[Ih_~, 

I Ih= • be regions in M such that d(IIH, l-I,) = 1, 1 <- i <-- h. Then I-I, E :~'(~) for 

i = 0 , 1 , . . . , h .  

PRoof. For any i, 0 _-< i _<- h, we have d(IIo, II~) -< i and d(IIi, IIh) _-- h - i. On 
the other hand, by the definition of ~h(O), d (~ ,O)=  d(IIh, IIo)= h;  hence 

i 
Fig. 35. 
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d(~ ,  l'I,) = d(IIo, II,) = i and d(II,, I I h ) =  d(II,,`2) = h - i (see Fig. 36). By  condi- 

tion (2) of Definit ion 21 we have  d(`2, xI t) => d(`2, ~ )  = h for any • E 8"2. There-  

fore, for any i, 0 _-i  _-< h, we have 

d(rl,, q,) = d(rl,, ~I,) + d(n,,  `2) - (h - i)  _-__ d(`2, q') - (h - i) 

_-> d(`2, ~ ) -  (h - i) = h - (h - i) = i = d(H,, ~,). 

If d(II,, xI t) = d(II ,  ~ )  then d(`2,xt t) = d(`2, ~ )  and then,  by condit ion (3) of 

Definit ion 21, • _-< ~ .  Then,  by  Definit ion 21, II, E .~' (~).  The  l emma is proved.  

COROLLARY. Let • E ~r2, h > 0 ,  and "2 E ~h(d~). Then there is a region 

I I E  ~h-~(~) such that d(`2, IL) = 1. 

Indeed,  by the definition of ~ h ( ~ )  we have d(`2, ~ ) =  h. Then  there are 

regions • = IIo, I I , , . - . ,  I-I,_,, I I ,  = `2 such that h(II,_~, H,)  = i, 1 _-< i _-_ h. By  

L e m m a  10, II, E . ~ ' ( ~ ) .  In particular,  I I h - , E . ~ h - ' ( ~ )  and d(`2,IIh_~)= 

d(IIh, IIh_l) = 1. W e  take  II to be  IIh_,. 

LEMMA 11. Let ~ E  ~r2 and h >-0. Let N be a regular submap of M such that 
C h (~ )  C_ N _C Ch+l(~). Then in t (N)  is connected. 

PROOF. W e  shall show that each region `2 in N is conta ined in the same 

connec ted  componen t  of in t (N)  as ~ .  Indeed,  since N_C Ch+~(~), we have 

` 2 E ~ k ( ~ ) ,  where  k_-<h +1 .  If ` 2 ~ ,  then k > 0 ,  and we have regions 

H , , . . . ,  IIk_~ such that d(II,_~, l-I,) = 1, 1 _-< i _-< k, where  II0 = ~ ,  I I k =  `2. Then by  

L e m m a  10, II~ E .~t (~) ,  hence since k - h + 1, we have 

Fig. 36. 
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11_o = cI), II1, • •., Ilk_l E Reg(C h (~)) C Reg(N). 

Now the condition d(II,_l, 11,) = 1, 1 _--< i _--< k, implies that !I0 = • and Ilk = ~ are 

in the same connected component of int(N). The lemma is proved. 

3.5. Condition (SC) and the derived map of an ordered 2-ranked map. 

Condition (SC). Let d~ = (M, {if1, ~2}, < ) be an ordered 2-ranked map. We 

say that it satisfies condition (SC) if, for any • E if2 and h => 0, every regular 

submap N of M such that Ch(~)C N C Ch÷l(~) is simply-connected. 

For example, for the map M in Fig. 37, let ~2 = {~}. Let N be the regular 

submap of M with the regions ~,  ~ and ~2. Then C°(~) C N C C~(~), but N is 

not simply-connected. Therefore condition (SC) fails to hold. On the other hand, 
it is easy to see that condition (SC) is satisfied for the map in Fig. 34. 

DEFINITION 23. The regions ~h and cI)'. Let d / =  (M, {~-1, if2}, < )  be an 

ordered 2-ranked map satisfying (SC). Then for any ~ E J - 2  and h =>0, 
int(Ch(qb)) is connected by Lemma 11. By condition (SC), Ch(~) is simply- 

connected and then also int(Ch(~)) is simply-connected, hence int(Ch(~)) is 

homeomorphic to the open unit square. We define the region ~h by 

(5) ~h:= int(C h (~)). 

For some s -> 0, we have C(~) = C'(~).  Hence int(C(~)) is homeomorphic to 

the open unit square. We define the region ~'  by 

(6) qb':= int(C((I))). 

For example, for the map in Fig. 34, 

~,=~,°_c,vl_c~c_~=~,~, %=~,°c_,v~c_~=~,L, ~,3=~°c~,~c_~,~=~,~. 

Fig. 37. 
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DEFINITION 24. The derived map. Let A/=  (M, {3"1, if2}, < ) be an ordered 

2-ranked map satisfying condition (SC). We form a new map M' such that the 

regions of M' are the regions ~ '  for all q~ E 32 and the vertices and edges of M' 

are the vertices and edges of M which lie on the boundary of some q~'. We call 

M'  the derived map of ~ .  

Clearly, M' is a regular map. 

For example, the derived map of ~ in Fig. 34 is as shown in Fig. 38. 

LEMMA 12. M' is a normalized map. 

PRoof. Since each region ~ '  of M' is of type ~ ' =  int(C(~)), its boundary 

cannot contain vertices of degree 1, hence M' is normalized (see Definition 5). 

The lemma is proved. 

DEFINITION 25. The maps E h (~) (h >-_ 1). Let d4 be an ordered 2-ranked map 

satisfying condition (SC). Let • E 32 and h => 1. We form a new map E h (q~) such 

that Reg(E h (q~)) = {~h-l} LI ~h (~) and the vertices and edges of E h (~) are the 

vertices and edges of M lying on the boundary of some region of Eh(~). 

For example, the map shown in Fig. 39 is E2(q~l) for the map of Fig. 34. 

LEMMA 13. Under the conditions of Definition 25 Eh(~) is an elementary 

map over ~h-~ (see Definition 15). 

PROOf. Let ~ be a region of Eh(q~), 2 ~ h - 1 .  Then 2E~n(q~).  By the 

corollary to Lemma 10, there is a region 11 E ~h-~(q~) such that dM (~, •-•) = 1. 

M' 

Fig. 38. 
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Since, by Definitions 22 and 23, II _C q)h-I we also have d~h,®,(2, ~h-1) = 1 (see 

Fig. 40). 

Let Q be a regular submap of Eh(~) containing q~h-~. Deleting the regions 

q)h-, and adding instead the regions, edges and vertices of the interior of 
Ch-l(q~), we obtain a map N which is a regular submap of M, satisfies 
C h-t(q)) C N C C h (~) and has the same support as Q. Since dg satisfies (SC), N 

is simply-connected. Then Q is also simply-connected. By Definition 15, E h (q)) 

is an elementary map over q~h-~. 

The lemma is proved. 

DEFINITION 26. Under the conditions of Definition 25, let • E .~h (q)). Then, 

considering gt as a region of Eh(q)), we can define paths a(~) , /5(V),  V(~) and 
8 (gt) satisfying conditions (c), (d) and (e) of Lemma 6 with M replaced by E h (~) 

and Q replaced by q~h-l. 

3.6. Transversals and projections in an ordered 2-ranked map. Let d / b e  an 
ordered 2-ranked map satisfying condition (SC) and let M' be its derived map. 

Fig. 40. 
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Given a boundary path/z of some region O' in M',  we define the projection of 

/z to • as follows. We have b d ( O ' ) = b d ( C ( O ) ) = b d ( C ' ( O ) ) = b d ( E ' ( O ) )  for 

some s > 1, and so/~ is a boundary path of E ' (O) .  Since, by Lemma 13, E ' (O)  is 

an elementary map over O '-1, we can speak of the projection pr(# ; • "-~) of/z to 
• s-I (see 3.3). Furthermore, bd(O '-1) = bd(E'-~(O)); hence pr(p.;O "-~) is a 

boundary path of E'-I(O). We can now consider the projection of pr(/z ; • "-~) to 
• "-2, and so on, until we reach • ° = O. In a similar way we can define right and 

left transversals and projections. The exact definitions will be given below in a 

more general setting. 

DEFtNrrIoN 27. Let • E 82, 0_--< h -< 1, and let v E bd(Or). The left and right 

projections lpr(v;O h) and rpr (v ;O h) of v to • h and the left and right 
transversals LT(v ;O  h) and R T ( v ; O  h) from v to • h, are defined recursively as 

follows: 

(7) lpr(v; O ' ) :=  v, 

(8) rpr(v; Oa): = v, 

(9) LT(v; Oa): = v, 

(10) RT(v; O ' ) :=  v, 

where 1 --< k _-</. 

lpr(v; • k-') := lpr(lpr(v, qb k); • k-'), 

rpr(v; Ok;'): = rpr(rpr(v; O k); Ok-'), 

LT(v; • k -1):= LT(v; • k )LT(lpr(v;Ok); • k-~), 

RT(v; Ok-~): = RT(v;  Ok)RT(rpr(v; Ok); • k-l) 

Let /~ be a boundary path of • t. We define the right and left projections 
rpr(/.~ ; • h) and lpr(/~ ; • h) of /~ to • h and the projection pr(/~ ; • h) of /z  to • h 

reeursively, as follows: 

(11) lpr(/~ ; O~): = tt, 

(12) rpr(t~ ; O') :=/.t, 

(13) pr(g,; Or): = #, 

where 1 _-< k _--< I. 

We define the shadow S(#;  • h) of # with respect to • h recursively as follows: 

S(/z;O ~) consists of the edges and vertices of p, and 

(14) S(# ; 0 ' - ' ) : =  S(/.~ ;Ok) t.J S(pr(/z ;Ok);Ok-') ,  1 ----< k < 1. 

Since • = • ° and 0'  = 0 '  for some s -> O, this definition also yields transver- 

sals, projections and shadows from 0 '  to 0 .  

lpr(/z; ~k-,) :  = lpr(lpr(t~; • * ); ,I '*-'), 

rprOz; ~*- ' )  := rpr(rpr(/z; ~* ); ~k-,), 

p r (# ;  Ok-'): = pr(pr(/.~; • k); • k-') 
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For  example ,  in Fig. 41 /x is a boundary  path  of • 2. We have indicated the  

paths  pr(/~; • 1) and pr ( t t ;  O). 

LEMMA 14. Let k <= l and v E bd(OZ). Then 

(a) o (LT(v ;  • k )) = o (RT(v ;  • k)) = v;  
(b) t (LT(v;  • k)) = lpr(v ; • k), t (RT(v ;  • k)) = rpr(v;  • k). 

PROOF. A n  immedia te  consequence  of Defini t ions 17 and 27. 

LEMMA 15. Let k <-_ 1 and let I~ be a boundary path of • t. Then 
(a) o(lpr(/~ ; • k)) = lpr (o(# . ) ;O k), t(lpr(/.~ ; • k)) = lpr(t(p.); Ok); 

(b) o(rpr(~ ; O k )) -- rpr(o(/z); O k ), t(rpr(p. ; • k)) -- rpr(t(/~ ); • k ); 
(c) lpr(/.t ; • k) is homotopic to LT(o(/z);  Ok)-lp, LT(t(/z);  0 k ) in c los (O ' ) \O  k ; 
(d) rpr(/.~ ; • k ) is homotopic to RT(o(/z) ;  • k )-~p. RT(t(p.) ;  O ~ ) in clos(O') \  • k. 

I f  lz is either trivial, or non-trivial and positively oriented, then 

(e) o(pr(/z ; O k)) -- lpr(o(~);  O k), t(pr(p, ; • k)) -- rpt(t(/.t ); • k ); 
(f) pr(/.t ; • k) is homotopic to LT(o(/z);  • k)-lp, RT(t(/z);  0 k ) in clos(O')  \ • k. 
I f  I~ is non-trivial and negatively oriented, then 
(g) pr(/z ; • k) -- pr(/~- ' ;  ok)-1;  

(h) o(pr(/z ; O k )) = rpr(o(/z);  O k), t(pr(p., • k )) = ipr(t(p.); • h); 
(i) pr(p, ;O  k) is homotopic to RT(o(/~);  • k )-~/.t LT(t(/~); • k) in clos(O') \O k. 

PROOF. All the  assert ions of the  l e mma  immedia te ly  follow f rom Defini t ions 
16, 18, 19 and 27 and part  (a) of L e m m a  7. 

LEMMA 16. Let • E ~rz and k <= !; let Iz = Iz,l.t2 be a non-trivial p.o.b.p, of 

• r. Then all the assertions o / L e m m a  7 remain valid i / •  is replaced by • k and 
u. . . u 

PROOF. A n  immedia t e  consequence  of Defini t ion 27 and L e m m a  7. 

Fig. 41. 
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LEMMA 17. Let apE~r2 and  let I~ be a p.o.b.p, o f  aP t . Let  i~= 

A,(~);t2(/.Q" • • ,~p(/~) be the le f t -hand-s ide  (Lh.s.) factorization of  ~ in M and  

A1(/.¢), A2(t~),"" ", Ap(t.¢) the corresponding sequence of  regions. Let  

I,:= d(A,0,), ap), i= l ,2 , . . . , e .  

(a) We cannot have IH = !, = 0 for some i, 1 < i <-- P. 

(b) I f  for some i > 1 ,  !,_1 <- _ !, then A,(V. ) is a head of/3(A,(/~)). 
(c) I f  for some i < P, l~+1---- l, then A,(/~) is a tail o f /3(A, ( /~) ) .  

(d) I f  for some i, 1 < i < P, we h a t e  l,_, < l, and l,+1 < l, then A, (/~) =/3(A, (p.)). 
(e) i~ -t is a head of  LT(t(/~); aP) if  and  only i f  

(a)  0 < !~ < 12 < ' "  < l~, 

([3) each A,(/~) is not a tail o f  #(A,(/~)). 

(f) /~ is a head of  RT(o(/.~);aP) if  and  only i f  

(,x) l~ > 12 > " "  > Ip > O; 

([3) each A~(/~) is not a head of /~(A,( /~)) .  

Similar statements hold for a negatively oriented b.p. and its r ight-hand-s ide  

(r.h.s.) factorization. 

PROOF. (a) If 1,-i = l, = 0 then A,_,(~) = A, (/~) = aP. This can happen only if 
either the map M is not normalized or clos(aP) is not simply-connected (see Fig. 
42). But each of these cases is excluded, because all the maps we consider are 
normalized and, since ~ satisfies condition (SC) and clos(aP)= supp(C°(aP)), 
clos(aP) is simply-connected. 

(b) Since/,- i  --< l,  A,_t(ft)Aj (/~) is a p.o.b.p, of the map E~,(aP) (see Definition 
25). The  region A, (/~) belongs to .~, (aP), therefore it is a region in E ~, (aP) distinct 
from aPJ,-~. If IH = !, then A,-t(/~) also is a region in E~,(aP) distinct from aP~,-1. If 
~_, < 1, then AH(/~) is contained in aPJ,-~ and therefore A~_l(bt) is a b.p. of aP~,-t 
(see Fig. 43). In both cases our assertion immediately follows from Definition 26, 
Lemma 6 and Lemma 13. 

The proof of part (c) is similar; part (d) follows from (b) and (c). 

( 
A i ~'1 

. ~ ° 

Fig. 42. 
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~i(/,) >,/-,(~) 

~i_~ = ~i 

Fig. 43. 

(e) Assume (ix) and (13) hold. Using part (g) of Lemma 7 and Definition 27 we 
obtain that if Ae(it)-'--.A,+~(it) -~ is a head of LT(t(i t) ;~ t,) then 
A~, (it)-~-.. A,+~(It)-~A, (it)-~ is a head of LT(t(it); ~,-~), hence of LT(t(it); ~t,-~). 
Iterating this argument we conclude that It-t is a head of LT(t(it);~). 

Reversing the above argument we obtain that if It-1 is a head of LT(t(it); ~)  
then (r,) and (13) hold. 

The proof of part (f) is similar. 
Analogous statements for a negatively oriented b.p. and its right-hand-side 

factorization can be proved in similar fashion. 
The lemma is proved. 

LlaMA 18. Let ~ E 3"2, k _-</, v E bd(~t); let It be a p.o.b.p, of ¢P~ such that 

It = It~it2 where It ~ is a head of LT(v; (b ~) and t~2 is a head of  RT(v; ~k). Then 

(a) LT(v ;~  k) = It~-lLT(o(it);~k); 
(b) RT(v; ~ ) = It, RT(t(tt); ~k); 
(C) pr( i t2;  ~ k )  = pr(g,; • k) = pr( i t2;  ¢I )k) = pr(v; ~k). (See Fig. 44.) 

PRoof. An immediate consequence of Definitions 16, 27 and part (g) of 
Lemma 7. 

Pnot~asrnoN 1. Let J / =  (M, {~rt, 3"2} ' < ) be an ordered 2-ranked map satis- 

~ i n g  condition (SC), M' its derived map, ¢PE 3"2 and It a p.o.b.p, of ¢P'. Let 

/4,=AiO~)A2(it)"'Ap(it) be the Lh.s. factorization of  It in M and 

Al(p.),A2(it),.- ' ,Ap(g) the corresponding sequence ., of  regions. Let L = 
-<g 

Assume that &(p,)g/3(A,(/~)) for each i such that I, >1. Then there is a 

factorization I~ = It ' g "it " such that 

(1) /t '  is a head of  RT(o(tt);O); 
(2) (I t")- '  is a head of  LT(t(it);O); 
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(3) i[ I~ " is non- t r iv ia l  then I.t " is on  the boundary  o f  ~pl and  tx " = tr~tr2. . . tr4, 

where either trj is on the boundary  o f  dp or o'j =/3 (Z j) for  some  region Y. E L~(~), 
1 =< j < q (see Figs. 45 and 46). 

PROOF. Write/z  =/z'p,0, where ~ '  is the maximal head of /z  which is also a 

head of RT(o(p,); ~). If/zo ~ is a head of LT(t(/.t); ~), we take p.": = t(tt'), a trivial 

Fig. 44. 

/.t" is trivial 

Fig. 45. 
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#" is non-trivial 

Fig. 46. 

path, and /z" := /~0  and we are done. So let us assume that/Zo ~ is not a head of 

LT(t(/.~); ~). Then we can write/z0 =/z"/z" ,  where /~"  is the maximal tail of ~0 

such tha t /z  ''-1 is a head of LT(t( /~);~)  and/~"  is non-trivial. 

Consider the 1.h.s. factorization/.d' = A~(#")A2(/z") • • • )q (/z") o f /z"  in M, and 

let A~(/z"),A2(p."),-.., Aq (~") be the corresponding sequence of regions. Let 

m/: = d(Aj (/z~'), ~),  1 _--- j -<_ q. By assumption, there is no E ~ ~ ( ~ )  with d(X, ~ )  > 

1 such that /3(X) is a subpath of /z .  Since ~"  is a subpath of p., we obtain 

1 °. If mj >1 ,  then fl(Aj(/~"))# Ar(/~"). 

2 °. If m~>O, then AI(#") is a head of/3(Al(/X")). 

Indeed, if Al(/z") is not a head of/3(A~(/z")), then by part (g) of Lemma 7, 

Az(/~") is a head of RT(o(A~(/~")),~'~-~)=RT(o(#");cI,"~-'), hence of 

RT(o(/z"); ~).  Then by part (b) of Lemma 18,/z'A~(p/') is a head of RT(o(p.); ~) ,  

contradicting the maximality of/.~'. 

Similarly, we have 

3 °. If mq > 0, then A~ (/.d') is a tail of/3(Aq (/.d')). 

4 °. Let m = maxj mj. If m > 0  and m~ = m for some i, then, for this i, At (/z") = 

~(n ,  (~,")). 
Indeed, if i = 1, then by 2 °, A, (/~") is a head of fl (A, (bt")). If. i > 1, then 

nt-~ _-< nt  = m, hence, by part (b) of Lemma 17, A, (I.d') is a head of/~(A, (1~")). 
Similarly, using 3 ° and part (c) of Lemma 17, we see that A,(p") is a tail of 

(A, (t~")). The path/3 (A, (/~ ")) is either simple or a boundary cycle of ¢% Then 

the non-trivial path A,(/~"), being both  a head and a tail of /~(A,(/.d')), must 

coincide with it. 

Comparing 1 ° and 4 ° we obtain that mj _-< 1 for j = 1 , . . . ,q ,  and hence/~" is a 

boundary path of ,1 .  If mr = 0 then Ar (t~") is on the boundary of ~ ,  and if mr = 1 

then by 4 ° we have Ar (/~") = fl(Aj (~")) and A~ (~") ~ .~t(O). Thus, (3) is satisfied. 
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We have/z =/z'/z"/~", and conditions (1) and (2) are satisfied by the construc- 

tion of t~',/z" and/z" .  
This completes the proof of Proposition 1. 

3.7. Submaps. Again, let d~ = (M~ {9"1, ~'~}, < ) be an ordered 2-ranked map 

satisfying condition (SC). Let N be a regular submap of M such that int(N) is 

connected and ~r2 O Reg(N) # 0 .  The linear order " < "  on ~2 induces a linear 

order on ~r2 n Reg(N), which we again denote by " <  ". Then, by Definition 12, 

2¢" = (N, {9"1 n Reg(N), ~r2 n Reg(N)}, < ) is an ordered 2-ranked map. 

The example in Fig. 47 shows that 2¢" need not satisfy (SC) in spite of the fact 

that d~ satisfies (SC). Here gr2 = {O1, O2}, O~ < 02. In d/, Ca (0  0 contains El and 
X3, while Ca (02) contains Z2, while in .At, Cx (02) contains El, Y-,2 and X3. For the 

submap O of N with the regions 02, Xt, Z3 we have C~O2) C_ Q c C~O2), but O 
is not simply-connected. 

This example shows also that C~(O)n  N may differ from C~O).  

We now present a sufficient condition under which the submap 2¢" satisfies 

(SC), and all the constructions of the previous section applied to )¢" yield the 

same results as if we were working in dL We start with the following general 

lemma. 

LEMMA 19. Let • E ~'2 and assume that, for some h > O, C~(0) C_ N. Then 

_ C ~  (o). 

PROOF. Let 'F. be a region in C~+~(0)n N and let /: = dM (O, Z). Then 
! < h + 1. We shall show that ~ E ~ ( 0 ) .  There are regions II~,. •., I-IH such 

Fig. 47. 
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that d~(H,-1,FI,)= 1, 1 _-<i_- < l, where rio = @ and Fit = 2. By Lemma 10, 

II, E . ~ ( ~ ) ,  0 _-< i _-</. Since by assumption, C~(ff) C_ N, we have . ~ ( ~ )  C_ 

Reg(N) for i _-< h, and therefore FI, E Reg(N) for i = 0 ,1 , . . . ,  ! - 1 (recall that 
l ~ h + 1). Since IIi_l and H, are neighbouring regions in M, there is an edge on 

their common boundary and then they are neighbouring regions in N too. Hence 

dN(FI,_1,FI,) = 1, 1_--<i_-- < l. Thus dN(~,E)= ds(IIo, IIt)_-__ l. On the other hand, 

since N is a submap of M, we have l = d~(~,E)_-<dN(@,~.), therefore 
d~ (~, E) = t 

Let • be a region in ff~ N Reg(N). Since ~ E C~÷~(~), we have l = dM(~, ~) ----< 

dM (~, ~) and if the equality holds then • _-_ ~ .  But then 

dN (~, ~) = ! = dM (~, E) _--< d~t (~, ~) _-< dN (~, ~) 

since N is a submap of M. If dN(~ ,~ )=dN(~ ,~ ) ,  then also dM(@,~)= 

dM (~, ~), and therefore @ _- ~ .  Then, by Definition 21, E E ~ ) ,  as required. 

The lemma is proved. 

DEFINITION 28. Let ~ = (M, {ff~, ff~}, < )  be an ordered 2-ranked map satis- 

tying (SC). Let Q be a submap of M. We call Q a 1-submap of .a if there is a 
subset oR of ~r: such that supp(Q)= U ~ ,  clos(~'). 

For example, putting 0//= {~z, ~3} for the map ~¢g in Fig. 34, we obtain the 
1-submap Q shown in Fig. 48. 

LEMMA 20. If  N is a regular 1-submap of all, such that int(N) is connected 

then for each • ~ ~2 tq Reg(N) and h >= 0 we have C~@) = C~(@) and Cx (@) = 

I/III 

Fig. 48. 
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PROOF. Let q/ be a subset of 8-2 such that supp(N) = l,.J,vE~ clos(~'). Then 
q / C  if2 f'l Reg(N). On the other hand, by the construction of the derived map 
M', each xp'E Reg(M') does not contain regions from if2 except for ~ ,  and 
therefore q / =  8"2 f'l Reg(N). 

Since O E 82f ' lReg(N)= 0//, we have clos(O')C_supp(N). Then, for any 
h _->0, Ch(O)_CN. By Lemma 19, Ch.u+~(O)tqN = C~(+'(O)C_ C~+'(O), h >0.  
Obviously, we also have C°(O) = C°x(O), the map consisting of the single region 
• and the edges and vertices on its boundary. We must now prove the inverse 
inclusion C~(O) C_ C~(O). Let E be a region of C~(O). By Lemma 8, ~ E ~ u ( ~ )  
for some xt, E ~rz and k _-> 0. In particular, ~ C_ ~'.  Since ~ ~ Reg(C~r(O)) C 
Reg(N), it follows that EC_supp(N)fq ~' .  By assumption, N is a 1-submap; 
hence ~ '  C supp(N) and then • E Reg(N). By Definition 22, ~ E ~ ( ~ )  implies 
that ~ ~ Reg(C~u(~)). As already shown, C~(~) C_ C~xt'). , Comparing 
'£~Reg(Ch(O))  and ~EReg(C~(xt')), we obtain ~ = O .  Moreover, k = 
dM(E, O) < d~(~,O) < h, and so ~ ~ ~ ( O )  implies E ~ Reg(C~((O)). Thus, 
C~O)  C_ C.~(O). The lemma is proved. 

COROLLARY. Let N be a regular 1-submap of At such that int(N) is connected. 
Let • ~ ~r2 N Reg(N). Then: 

(a) The ordered 2-ranked map .A r = (N, {if, fq Reg(N), ff~ f3 Reg(N)}, < )  

satisfies condition (SC) and the derived map N' is a submap o[ M'. 
(b) ~e~40) = ~ , ( O )  (h _-> 0), ~e~ (O) = ~e~ (o)  and E ~ O )  = E~,(O) (h > 1). 
(c) For any k <- !, v E bd(~ ~) and a b.p. ix of O' 

lprx (v; • k) = lpr~ (v; • k), 

LTx (v; • k) = LT~, (v; O~), 

prx (tt ; • k) = pr~ (/x ; • k), 

rpr~r (v; • k) = rpr~t (v; • k), 

RTx (v; • ~) = RT~ (v; • K), 

lprx (/x ; O k) = lprx (tt ; • k), 

rpr)¢ (/z ; O k) = rpr,u (/~ ; • k ). 

04. Ordered 2-ranked maps with limitations on indices of inner regions of 

rank 1 

4.1. DEFINITION 29. The index o[ a region in a ranked map. Let .4/= 
(M, rank) be a ranked map, let • be a region in M and/x a boundary path of • 
such that • is to the left of p.. Let 

(I) /~ = P,(l-~ )P2(l.~ ) "  " P, (l~ ) 

be the r.h.s factorization of/~ in M and 
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(2) P~(/z), P2(/z), . . . ,  Pq (/~) 

the corresponding sequence of regions or connected components of compl(M). 

We define the index of • in Mrelative to ~, ind~ (qb;/z), or simply ind(O;/.Q, as 

the formal sum 

ind(O; tz) = ~ die, 
,~0 

where do is the number of connected components of compl(M) in the sequence 

(2) and di is the number of regions of rank i in the sequence (2), each counted 

with its multiplicity, i = 1, 2 , " . .  

If • is to the right of p., we define 

ind(q~; p.):= ind(q); p.-I). 

By the index of a region cb in M, inda (q)), or simply ind(q0, we mean the 

index of q~ relative to a positively oriented boundary cycle Iz of q~ such that q is 

minimal. 

.It is easy to see that ind(q~) is independent of the choice of a p.o.b.c./z of q~ 

with minimal q. 

For example, let for the map ~ in Fig. 49, rank( i f )= rank(W)--2, and all 

other regions are of rank 1. Then 

ind(~) = 3e2, ind(A) = e0 + e~, ind(~) = eo + 6e~ + 7e2, 

ind(II) = e2, ind(X) = e2, ind(F) = 2eo + e~ + 2e2. 

Let d = X,~odie,, f=Ei._o[~e, We write d =<f if di--<~ for i=>0. 

DEFI~mON 30. Let qb E Reg(M), d = Ei¢0 die, Let tz be a boundary path of 

qb. If ind(O;/.t) _---d, we wri te /z  E O(d). 

d~ = (M, rank) 

Fig. 49. 
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Comparing Definition 9 and Definition 30, we obtain 

LEmMA 21. Let • be a region in M such that dos(O) is simply-connected. Let 

i~ be a b.p. of O. 
(a) If  rank(O) = 1, then for any d = ~,~1 d,e,, l~ E I(O; d) if and only if 

(b) For any m >- O, I~ E I(O, me,) if and only if I~ E O(me O. 

The proof is obvious. 

DEFI~rno~ 31. Inner region of M. We call a region • in M an inner region if 

bd(O) I-i bd(M) contains no edges. 

Let ind(O)= Xl~0 d~e, • is an inner region if and only if do = 0. 
Thus, for example, in Fig. 50 • is an inner region in M. 

Conditions D(p) and D(q; 1). Let off = (M, rank) be a ranked map. We say 
that 3/ satisfies condition D(p) if it contains no region • of rank 1 such that 
ind(O) _-< pel. We say that off satisfies D(q; 1) if it contains no region • of rank 1 

such that ind(O) _-< qe, + e2. 

4.2. Let off = (M, {3"1, 3"2}, < ) be an ordered 2-ranked map satisfying condi- 

tion (SC). 

ImMMA 22. Let • E 3"2, h _-_ 1 and 11 ~E ~h (O). Then : 
(a) V(II) E II(e,) and 8(l-I) E II(e 0 (see Definition 26). 
(b) If  h = 1, then a (II) E II(e2) and 

ind(g) _-< 2e~ + e2 + ind(H;/3(II)). 

(c) If  off satisfies D(5) and D(3;1), then for each h >1,  cx(II)EII(2e,) and 

ind(II) <- 4el  + ind(l-[;/3 (rl)). 

t~ 

Fig..50. 



Vol. 41, 1982 SMALL CANCELLATION THEORY 53 

PROOF. (a) and the first statement of (b) follow immediately from Definition 
26 and Lemma 6. The second statement of (b) follows from the obvious 

inequality 

(3) ind(II) _-< ind(II; a (H)) + ind(II;/3 (H)) + ind(II; 3'(H)) + ind(II; # (H)). 

(c) We use induction on h. Let a(II) = AIA2" • • Ap be the l.h.s, factorization of 
a(II) in M and A~,A2," .,A~ the corresponding sequence of regions, where 
p =/(a(II ) ) ,  A, = ai(a(II)), A, = A,(a(II)). Since IIELeh(~),  we have A, E 
~,-1(¢p), 1 <-_i<p. By Lemma 8(c), A, E ~r~ and then ind(II, a(II))=pc1.  (See 

Fig. 51.) 
If p >2 ,  then A2 =/3(A2) and so ind(A2,/3(Ae)) = el. If h =2,  then, applying 

part (b) to As, we obtain ind(Ae)_-< 3el + ee, contradicting D(3; 1). 
If h > 2, then, applying the induction hypothesis to A2, we obtain ind(Ae)_<- 

5e~, contradicting D(5). Therefore p-_<2 and so ind(II; a ( I I ) )=  per _-<2et. The 
second statement follows from (3). 

The lemma is proved. 

LE~[MA 23. Assume that .4t satisfies D(6) and D(4; 1). Let dp E ~re and let i~ 
be a p.o.b.p, of ~h-~, h >1.  If i~ is a subpath of a(IIl)a(II2) for some 
II~, He E ~"(~) ,  then for the i.h.s, factorization 

,,(fT) 

p 

F 

Fig. 51. 
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(4) p = A,Az" 'Ap 

o[ I-L in M we have p <= 2. 

PROOF. We argue as in the proof of Lemma 22. Let Ax, Az , "  ", A~ be the 
sequence of regions corresponding to the factorization (4). If p > 2  then 
A2 =/3(A2) and then for h = 2, ind(A2)-< 4e~ + e2, contradicting D(4; 1), and for 
h > 2, ind(A2)=< 6el, contradicting D(6) (see Lemma 22 (b) and (c)). Therefore,  
p =< 2, as required. 

LEMMA 24. Assume that .11 saasfies D(6) and D(4; 1). Let ~ E if2. I f  I~ is a 

subpath of/3(II)  for some H ~ h ( q ~ ) ,  h _-_1, then: 

(a) either lpr(/z ; ~ )  is trivial or lpr(t~ ; ~ )  = a(~,~) for some X~ E .~1(~); 
(b) either rpr(tz ; ~ )  is trivial or rpr(t~ ; c~) = a ( ~ )  for some ~ E ~1(~) ;  
(c) either pr (p  ;q~) is trivial or pr(t~ ; ~ )  = a(X3) or else pr(p. ; ~ )  = a(X3)a(24) 

for some ~3, X, E ~ ( ~ ) .  

In particular, for any vertex v Ebd(O') ,  lpr (v;O)EO(e~) ,  rp r (v ;O)EO(e~)  
and pr(v;  ~ )  E O(2e~). 

PROOF. For some k - h, let us consider pr(p~ ; • k). By induction on h - k we 
show that either pr( t~;O k) is trivial or pr( /z;Ok) = a(F~) or else pr(/~;Ok) = 
a (F , ) a (F2)  for some F,, F 2 ~  ,~k+~(t[~). 

Indeed,  for k = h, pr(/~ ; • h ) = o(a  (l-I)) for /x  = o(/3 (H)), pr(/z ; ~h)  = t(a  (H)) 
for /~  = t(/3(II)) and pr(/z ; ~k)  = a( I I )  otherwise. 

If pr(/~ ; • k) = a (F0a  (I"2) for some r~, 1"2 ~ .~k+~(~) and k > 0 then according 
to Lemma 23, the path a(F~)a(F2) is a subpath either of/3(A 0 or of/3(A0/3(A2 ) 
(but not of/3(A~) or/3(A2)) for some A~, A2 E ~k  (~) (see Fig. 52). 

In the first case pr(a(F1)a(F2);dPk-1)=a(A1) and in the second case 
= 

If p r (~ ;  ~ )  = a(F,)  and k > 0 then a similar argument  applies (see Fig. 53). 

(a) 

~cqJ ~(rj 

J 

(b) 

Fig. 52. 
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(b) 

Fig. 53. 

If p r ( / z ;~  k) is trivial and k > 0  then either pr ( /~ ;~  k-~) is trivial or 

pr(/J. ;~ k-l) = or(A) for some A E .~k(~). This proves part (c). 

Parts (a) and (b) can be proved in a similar way. We have only to observe that 

in Fig. 53(b) 

lpr(ot(F,); ~k) = o~(A~), rpr(a(Fl);  ~k) = a(A2). 

The lemma is proved. 

4.3. Paths on the common boundary of two regions in the derived map. Let 

= (M, {~'1, J'2}, < ) be an ordered 2-ranked map satisfying conditions (SC), 

D(8) and D(6; 1). 

LEMMA 25. Let alp, ~ E if2; let F E .~(~) and let • be a boundary path of F 

and also a boundary path of xt,'. Let I = d(F, qb). Assume that one of the following 

conditions holds: 
(o 0 xt, < dp and l >= 1 (i.e. F # dp), 

(f3.) dp < ~ and l > l ,  
(~1) dp < ~ ,  l = 1 and z does not contain boundary edges of ~ .  

Then ind(F, "r) _-< 4el. 

REMARK. For this lemma we actually need only (SC), D(5) and D(3; 1). 

PROOF. Without loss of generality, we may assume that 7 is non-trivial and 

",Is' is to the left of ~'. Let ~" = AIA2" • • A~-be the l.h.s, factorization of a- in M and 

let A~,A2," ",Ap be the corresponding sequence of regions, where p = 10"), 

A, = A, (~), A, = A, (~'), 1 _-< i =< p. We denote l~ = d(A,, xt,), 1 =< i =< p (see Fig. 54). 

1 °. l ,>-I  fora l l  i, l<-_i<=p. 
Indeed, in case (oc) we have l~ => l => 1 by Lemma 9. In case (13), an application 

of Lemma 9 gives l~ => l - 1 => 1. In case (~), At # • for all f, because otherwise ~" 

would contain a boundary edge of ~ .  Therefore l~ = d(A~, ~)_-_ 1. 



56 E. RIPS Isr. J. Math. 

Fig. 54. 

In particular, using L e m m a  8(c), we obtain A, E ~ t  for all i. Therefore:  

2 °. ind(F; ~-) = pe~. 

3 °. There  exists m such that  l~ = m -  1 or m for all i. 

Indeed,  in case (et), ! _< l~ _-__ ! + 1 by L e m m a  3 and we take m = ! + 1. In cases 

(13) and (~/) the same lemma gives l~ _-< ! _--< l~ + 1; hence l - 1 _-__ I, _----- ! and we take 

m = l .  

Because of 2 ° we have to show that  p _-__ 4. Suppose that  p > 4, and consider 

the sequence of numbers  l~, 12,'. ", lp. We say that  for some j, 1 < j  < p, lj is a 

weak local maximum if ljA --< l, and lj÷~ _-< lj. It is easy to verify that  the longest 

sequence taking only two values and having no weak local maxima is 

m, m - 1, m - 1, m. Hence there exists j, 1 < j < p, such that  li-~ =< l~ and lj+~ _-< lj. 

Then,  by L e m m a  17(d), /3 (Ai )=A i. Since l_-__l, we have F ~ f f ~ ,  hence 

ind(Aj,/3 (At)) = el. 

If lj = 1 then,  by L e m m a  22(b), ind(Aj) -_< 3e~ + e2, contradicting D(6; 1), and if 

/j > 1 then, by L e m m a  22(c), ind(Aj)_-<5e~, contradicting D(8). 

Therefore  necessarily p _-4. Thus ind(F, ~-)= pe~ _-< 4et. 

The  lemma is proved. 
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PROPOSITION 2. Let d / =  (M, {$r,, ~r2} ' < ) be an ordered 2-ranked map satis- 

[ying conditions (SC), D(8) and D(6; 1). Let ~ ,  xI t E ~2. Let tz be a non-trivial 

p.o.b.p, o/d#' which is simultaneously a n.o.b.p, o / ~ ' .  Then there is a [actorization 

( 5 )  = " 

and, if I~" is non-trivial, a further [actorization 

(6) /x" = ~1~2" • "/Zh 

such that 

(a) /x' is a head o/ RT(o( /~);~) .  

(b) /2 ''-1 is a head o/ L T ( t ( ~ ) ; ~ ) .  

(c) pr(w'; ~) E tt~(2el), pr(lz"; ~) E ~(2el). 
(d) pr0-*'; ~ )  E xtt(4el), pr(tt"; gt) E ~(4e~). 
I / •  < • in the order on ~2 and Iz" is non-trivial then 

(e) tz" is on the boundary of d# ~ (see Definition 23). 
(f) Each I~ contains a boundary edge of ~ ,  and i/ h >->_ 2 then Iz2 " " l~h-1 is on 

the boundary of ~I. 
(g) The/actorization (6) is the l.h.s. /actorization of Ix" in M. 
(h) For each ], I <-_ ] <- h, either l~j is on the common boundary of • and • or 

= t 3 ( r , ) / o r  some Fj E ~ ' (~) .  
(i) I f  /z~=/3(F 0 then pr(/~'Vh;W)EW(5e~) and if /xh=/3(Fh) then 

pr(v.h/z"; at') E xlt(Se~) (see Fig. 55). 

Fig. 55. 
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I f  • < • and Iz" is non-trivial, then instead of (e), (f), (g), (h), (i) we have the 

[ollowing : 

(e') I~" is on the boundary of ~ .  

(f') tz" is on the boundary of qr~. 

(g') The factorization (6) is the r.h.s, factorization o[ I~" in M. 

(h') For each i, 1 < ] < h, either I~j is on the common boundary o[ • and • or 

/x~ = fl(IIj) -1 for some IIj E ~ ( ~ ) .  I[ lzl is not on the common boundary of dp and 

• , then I~1 is a subpath of/3(II1) -~ for some II~ E ~ ( ~ ) .  I f  I~h is not on the 

common boundary of • and ~ ,  then Izh is a subpath o[ /3(11_ 0 ~ for some 

1-I~ ~ .~(q ' ) .  

(i') I f  lz~ is not on the boundary of ~ ,  then pr(/z'~l; q0 E ~(5e~); i[ l~h is not on 

the boundary of ~ ,  then pr(tzhl~"; ~ ) E ~ ( 5 e , )  (see Fig. 56). 

PROOF. Since ./~ satisfies (SC), clos(~') is simply-connected and therefore the 

fact that/z is a non-trivial p.o.b.p, of ~ '  and a n.o.b.p, of ~ '  implies that ~ '  ~ ~ ' ;  

hence • ~ ~ .  

We have: 
1 °. Let F ~E ~ ( ~ )  and let ~" be a boundary path of F which is a subpath of/x. 

Suppose that one of conditions (et), (13), (~/) of Lemma 25 holds. Then ~-~/3(F). 

Indeed, by Lemma 25, ~-EF(4el). If z =/3(F) then, by Lemma 22, if 

! = d(F, qb) = 1 then ind(F) _<- 6e, + e2 contradicting D(6; 1) and if l = d(F,@) > 1 
then ind(3,)_-__8e~ contradicting D(8). Therefore ~'~/3(F), as required. 

We are now in a position to apply Proposition 1 to the regions ~,  qb' and the 

path it. We obtain factorization (5) with the following properties: 

Fig. 56. 



Vol. 41, 1982 SMALL CANCELLATION THEORY 59 

2 °. /z' is a head of RT(o(/x);~) .  
3 o. p,,-1 is a head of LT(t(/.Q;~). 

4 °. If /z" is non-trivial, then /x" is on the boundary of ~l  and there is a 

factorization 
(7) /.L" = @,@z" " " @q 

such that for each j, 1 _-< j =< q, either @j is on the boundary of @ or o,j =/3 (F,) for 

some Fj E ~l(qb). Moreover, we may assume without loss of generality that (7) is 
the l.h.s, factorization of/ . t"  in M. 

Comparing 1 ° with 4 ° , we reach the following conclusions: 

5 °. If • < ~ and/~"  is non-trivial then /~" is on the boundary of ~ .  

6 °. If ~<' ,P' ,  /~" is non-trivial and @j = fl(Fs) , then trj contains a boundary 
edge of ~ .  

On the other hand, by Lemma 9, applied with F = ~ ,  we obtain: 

7 °. If • < ~ and @j is on the boundary of qb, then it is also on the boundary of 

Using 6 ° and 7 ° , we obtain: 

8 °. If • < ~ ,  p." is non-trivial and q _-> 2, then @2" "@q-, is on the boundary of 

Indeed, consider the path r : = / ~  "-1. Applying 2 °, 3 ° and 5 ° with qb,~,/~ 

replaced by ~ ,  qb, K, we obtain a factorization 

8) K = KsKt~K m 

such that 

(eL) K' is a head of  R T ( o ( K ) ;  ~') ;  

(6) K"-1 is a head of  LT( t (K) ;x t , ' ) ;  

(~/) if K" is non-trivial then K" is on the boundary of ~ .  

Since K' and r"-~ are heads of transversals to W, they do not contain boundary 
edges of W. 

Comparing (7) and (8), we see that 

@1@2" ° "  @q-l@q = / j ,n= K - 1  • K m - I K . - 1 K t - 1 "  

By  6 ° and 7 °, @~ and @q conta in  boundary  edges of  ~ ;  there fore  r ''-1 is a head of  

~r~ and r '-~ is a tai l  o f  o-q. T h e n  @~.. .  o'~-1 is a subpath o f  r " -~ ;  hence o-2. • • o-q_, is 

on the boundary of ~ ,  as required. 

9 °. pr(/z'; ~ )  ~ ~(2e~) and pr(/z"; ~ )  E ~(2e~). 

Indeed, since by 2 °/~'  is a head of RT(o(/z); ~),  it follows by Lemma 18 that 

p r ( /z ' ;<b)=pr(o( t t ) ;~)  and then by Lemma 24(c) that p r (o ( / z ) ;~ )E~(2e l ) .  
Similarly, we obtain 
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pr(/~"; ~)  = pr(t(/z); @) E ~(2el), 

as required. 
10 °. If • < • and tt does not contain boundary edges of ~ ,  then pr(/z ; ~) E 

~(4el). 
Indeed, if ~" is non-trivial, then by 6 ° and 7 ° ~ contains boundary edges of V. 

Therefore ~" is trivial and then, by 9 °, Lemma 16 and Lemma 7(d), p r ( ~ ; ~ ) =  
pr (~ '~" ;  ~)  E (4el). 

11 °. If V < ~, then pr(~'; V) E ~(4e,) and pr(~";  V) E V(4e~). 
By Lemma 9, any edge e in ~ '  which is a boundary edge of V is also a 

boundary edge of ~.  But by 2 ° ~ '  is a head of a transversal to ~,  hence it does 
not contain boundary edges of ~.  Therefore, neither does ~ '  contain boundary 
edges of V. Applying 10 ° with ~, V,/~ replaced by V, ~,/~'- ' ,  we see that 
pr(~';  ~ )  E ~(4e0. Similarly, pr(~";  V) E ~(4e~), as required. 

12 °. If V < ~,/~" is non-trivial and/~o is a head of ~" such that ~0 is a subpath 
of/3(1-1) -1 for some lq E M'(~), then pr(/z'/z0; V ) E  V(5e0. 

Indeed, pr(p.o; * )  is a subpath of a (1-I) -~. Hence pr(p.o; ~ ) ~  *(el).  Then, in 
view of 11 °, pr(/~'/x0; * )  ~ *(5e,). 

13 °. Let • < ~ .  
(1) pr(/~'; ~ )  ~ *(4e,) and pr(/z"; V) ~ xt'(4e0. 
(2) Let /~" be non-trivial. If tri=/3(F,) for some F 1 ~ ' ( ~ ) ,  then 

pr(/.~'tr,;V)~V(5e~), and if o'q=/3(Fq) for some F q ~ ( ~ ) ,  then 
pr ( , r~" ;  xt,) ~ ~I'(5e0. 

Denote ~-:=/~'-' in case (1) and ~':= tr~'/x '-a in case (2). In view of Lemma 
15(g) and Lemma 24(c), we have to show that in case (1) pr(~-, V) ~ *(4e~) and in 
case (2) pr(¢; ~ )  ~ ~(5eI). 

Applying 2 °, 3 ° and 5 ° with ~ , ~ ,  ~ replaced by ~ , ~ ,  ~, we obtain a 
factorization 

(9) "r = ~"z"¢" 

such that 
(et) ~-' is a head of RT(o(~'); ~);  
(13) ~''-' is a head of LT(t(~-); xt,); 
(~) if ~-" is non-trivial then ~-" is on the boundary of V. 
Applying 9* with ~, /z  replaced by V, ~- we obtain 
(8) pr(~"; ~ )  ~ ~(2e~) and pr(~''; ~ )  ~ ~(2el). 
If r" is trivial, then, by Lemma 16 and Lemma 7(d), pr(~-;~)= 

pr(~'q''; ~ ) ~  ~(4e0, as required. Assume now that ~'" is non-trivial. Then, in 
view of Lemma 16 and Lemma 7(d), (e), 
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(10) prO'; xlt) = pr(r'; ~)7"pr0"';  ~). 

Since p.' is (by 2 °) a head of RT(o(#); ~), we can write # ' =  lr, lr2, where It, 

does not contain boundary edges of ~ '  and ~'2 (if non-trivial) is on the boundary 
of • 1. By 4 °, tr~ is on the boundary of ~ '  and therefore in both cases (1) and (2), 

we can write 

(11) ~" = ~,~2 

where ~ (if non-trivial) is on the boundary of ~ '  and ~: does not contain 
boundary edges of ~1. 

Since, by (~/), ~'" is on the boundary of • = xI~, it is also on the boundary of ~ ,  

by Lemma 9. By (9) and (11), ~" = ~r'r"r" = ~ 2 .  

Since ~2 does not contain boundary edges of ~ ,  we see that ~'" is a subpath of 

~ ,  and then 1-' is a head of 4~. Hence ~-' is on the boundary of ~ ' .  We have 
< • and therefore, by Lemma 9, z' is on the boundary of ~ .  (See Fig. 57). By 

Definition 23, ~ = int(C'(~)) and, by Definition 25, C~(~) = E~(~). By Lemma 

13, E ' (~)  is an elementary map over ~ .  By (or), ~-' is a head of RT(o0"); ~). 

Therefore, by Definition 19, we obtain 

(12) pr(~"; ~ )  = pr(o(r); ~ )  ~ ~(e~). 

case (1) 

Fig. 57. 

case (2) 
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Consider the 1.h.s. tactorization of It '  in M, I t '=A1A2."A, ,  and let 

A~, A2,- ' - ,  A, be the corresponding sequence of regions. Denote  

lj: = d(Aj, ~),  1 < ] < r. 

Since It '  is a head of RT(o( I t ) ;~) ,  it follows from Lemma 17(0 that 

1~>12>'" >1,-~>1,>0, 

hence li => 2, j = 1, 2 , . . . ,  r - 1. 

Therefore A~A2."A,-~ does not contain boundary edges of ~ .  Thus by 

Lemma 9, A~A2" •. A,_~ does not contain boundary edges of ~ .  The path It '  is a 

head of ~--~; hence A;-2~A,_~2...A~-~A? ~ is a tail of 1-. By (~/), z" (assumed 

non-trivial) is on the boundary of ~ .  

In case (1) we have ~- = It'-I = A;-~A;2~ . . -  A~A~ ~ and then ~'" is a subpath of 

Aft. The path T" is then on the common boundary of • and A,, where 

d(A,, qb) = l, > 0. By Lemma 8(c), A, E ff~; hence, by Definition 30, 

(13) 7"e 't'(e0. 

• -~A -~ and then r" is a In case (2) we have r=o-~tIt'-~=tr~tA;~A;--t~ "'A2 ~ , 

subpath of o';~A; -~. The path tr~ ~ is on the boundary of F~ ~ ~1(~)  C_ ff~ and A ; I 

is on the boundary of A, E ff~. Therefore, 

(14) r " E  ~(2el).  

In view of (10), in case (1) it follows from (a), (12) and (13) that pr(z; ~ )  

• (4e~), and in case (2) from (B), (12) and (14) that p r 0 " ; ~ ) ~ ( 5 e l ) .  The 

remaining assertions of 13 ° are verified similarly. 

All the assertions of the proposition have now actually been proved. Indeed, 

we have a factorization (5) which, by 2 °, 3 ° and 9 °, possesses properties (a), (b), 

(c). Property (d) follows from 11 ° and 13 °, (1). If It" is non-trivial and • < ~ ,  then 

we take (6) to be the l.h.s, factorization of It" in M. Then by 4 °, q = h and Itj = ~r~ 

for j = 1 , ' . . ,  h. Properties (e) and (h) follow now from 4 °, (f) follows from 6 °, 7 ° 

and 8 °, (g) is satisfied by the construction of (6) and (i) follows from 13 °. 

If/z" is non-trivial and ~t' < ~ ,  then we take (6) to be the r.h.s, factorization of 

It" in M and let II~, H2, . . . ,  IK be the corresponding sequence of regions. Then 

property (e') follows from 5 °, (f') follows from (e') by Lemma 9, and (g') is true by 

the construction of (6). Since, by (f'), It" is on the boundary of Wt, it follows that 

0 < d(II~, W ) <  1 for any j, 1 < j < h. If for some ], 1 <_-j/<-h, It~ is not on the 

boundary of W, then d(II~, W) = 1. Therefore, if 1 < j < h, then d(II~_~, W) < 1 = 

d(II~,W) and d(II~+~,W)~l =d(II~,q'). Thus, by Lemma 17(d), It~ =/3(II~) -~, 
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where II, E LP'(q;). Thus, property (h') also holds. The first assertion of (i') 

follows from 12 °. The second assertion of (i') can be proved in similar fashion. 

The proposition is proved. 

4.4. An "'area theorem" for ordered 2-ranked maps. 

PROPOSITION 3. Let ~ = (M, { i ,  f 2}, < ) be an ordered 2-ranked map satis- 

fying conditions (SC), D(6; 1), D(8). Let the subset all of f ~ be defined by 

q/:= {~ I ~ ~ i l ,  ind(~) --- 2e~ + 2e2}. 

Assume that M is connected and simply-connected, and let co be a boundary cycle 

of M. Then card(f1 \ 0-//) is effectively bounded in terms of card(f2) and the length 

ofoz 

REMARK. The assumptions of connectedness and simply-connectedness can 

be omitted; we have only to consider instead of co a system of boundary cycles 

describing bd(M). 

PROOF. Consider the derived map M'. Since ~ satisfied (SC), for any region 

qb' in M',  clos(qb') is simply-connected. Let h = card(if:). For any two regions qb' 

and ~ '  in M',  the intersection of their boundaries, bd(~') f3 bd(qQ has no more 

than h -  1 connected components. Therefore we can find paths IX~, IX2,"" ", Ixk 
such that 

1 °. Each IX~ is a p.o.b.p, of some regions ~] and a n.o.b.p, of some region W], 

l<=i<-k. 

2 °. Each (non-oriented) edge of M'  belongs exactly to one of the paths 

IX~, IX2, " " ",/-tk, co. 

3 °. k = < h(h2- 1) (h - 4 ) _ -  < 1  h 3. 

Substituting, if necessary, IX, by Ix;-l, we may assume without loss of generality 

that 

4 °. qb~ < xF~ in the linear order on f2,  1 _-< i _-< k. 

Applying Proposition 2 to the path IX, we obtain a factorization 

(15)  Ix, = Ix;ix'; ix'7 

and, if Ix" is non-trivial, a further factorization 

(16) Ix" = Ix,,Ix,2 • • • Ix,h,) 

with the properties described in Proposition 2. 
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If/z'~ is non-trivial, then by Proposition 2(g) (16) is the l.h.s, factorization of 

/~'~. Let 

(17) F . ,  Fi2,  • " ", Fib0) 

be the corresponding sequence o'f regions. We consider the set of regions 

(18) ~ ={F,j [1 < j  < h(i), d(F,j, ~ , )  = 1}. 

For any q~E 82, there may be some values of i such that ~, = • (1 =< i _-< k). 
We denote 0//(q~) the union of all sets ¢//, such that ~,  = ~ .  Let O(q~) be the 

regular submap of M such that 

Reg(Q (~')) = {@} t3 qZ (q~). 

Since, by (18), °l/(q~) C_ ~'(q~), we have C°(q~) C_ Q(q~) _c C'(q~). 

Therefore, by Lemma 11 and (SC), supp(O(q))) is connected and simply- 

connected. 
We denote ~ / t h e  map obtained from M by deleting int(O(q~)) for all q~ E 82. 

5 °. ~ (q~) C_ q/ for all q~ E 8.2. 
Indeed, consider some region F~j, 1 < j < h(i), such that d(Ej, q)i) = 1. Accord- 

ing to Proposition 2(f), (h), /3(Ej)=/~ij is on the boundary of ~ ,  therefore 

ind(E~,/ /(Ej))=e2 and then, by Lemma 22(b), ind(Es)<-_2el+2e2. Hence, 
F~j E ~.  In view of (18), 0//~ _C 0//and then 0//(q~) C_ ~ for all q~ E 8"2, as required. 

In view of 5 °, it is enough to show that the number of regions of fiT/ is 

effectively bounded in terms of h = card(8.2) and [to[. 

Let 

(19) A . ,  Ai2,  " • ", Aito)  

be the sequence of regions corresponding to the l.h.s, factorization of/~, in M, 

and 

(20) P , ,  P,2, " ' ", Pi,,~ 

the sequence of regions corresponding to the r.h.s, factorization of /~, in M. 

Consider the set of regions ~V" C 8.1 defined by 

(21) W" = {II J II E 8.~, ind(II) = doro+ d,e~ + d2e2, d2 >= 2}. 

6°.°if'C_{A,jll <-_j<-_l(i), l < i <=k}tJ{Po]l <-_j<-_r(i), l <=i <=k}. 
Indeed, let 1-1 E °/V. Then II E/8.1. By Lemma 8(c), for some • E 8.2, I1 E ~(¢,).  

Let ind(II)= doeo+ dle~ + d2e2. Since d2_---2>0, there is at least one region 
~ 8.2 such that d(II, ~ )  = 1. Then by Definition 21, II ~ .~'(,Ia). By Lemma 6, 
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bd(lI) N bd(~)  is connected and described by a (17). Therefore, in view of d2 _-__ 2, 

there is a region ~o ~ ~2, ~o fi ~ ,  such that II and ~o have a common boundary 

edge e. According to Definition 24, II C ~ '  and ~o _C ~ .  Therefore the edge e is 

on the common boundary if ~ '  and ~ .  Then, according to 2 °, for some /, 

1 _-< i--< k, the path /~ contains e. Then the region II appears either in the 

sequence (19) or in the sequence (20) for the same value of i. 

This proves our assertion. 

7 °. (et) cardOV'\ q/e) N {A,,, Ai2, • • ", A,,o}) =< 4; 

(13) card(~/¥ " N {Pi~, P,2, • • ", P,,o)) --< 2, 1 _-< i _-< k. 

Consider the sequence of regions 

(22) £ , ,  £iz, • • ", £i.o) 

which corresponds to the l.h.s, factorization of /~] in M. Let lj =d(£~,,~i),  

i <-_j <= s(i). By Proposition 2(a),/zl is a head of RT(o(/~); ~). Then by Lemma 

17(f), 

l ~ > / 2 > " - >  l , o > 0 .  

Since E~j E Af(~i), by Definition 21, d(E~j, ~t')= d(~i, ~i)  for any • E ~r2. Since 

lj > 1 for j = 1, 2 , . . . ,  s ( i ) -  1, we obtain that for En, Z~2," • ", ~i.(t)-~ there is no'  

region xI, in if:  such that d (~ i j ,~ )=  1, 1 _-<] _-<s( i ) - l .  Therefore, 

Similarly, let 

(23) Ilil, Irli2, " " ", Hipo) 

be the sequence of regions which corresponds to the l.h.s, factorization of/~'~' in 

M. Then 

n {rl,,, II,2, • •., l-l,p(o} C {II,,}. 

By the construction of °//i, we have 

(~r \  oUi) n {r,,, ri:, • • -, rib(,,} _c {rl,, rib,,,}. 

In view of (15), 

{A,, At2, • • ", h,,o} = {~n, • • ", $,(i)} U {ri,, • • ", Fib0)} U {II,,  • •., II,p(i)}. 

Therefore 

(og/.\ q/i) N {Ai,, At2, "" ", Ai,(i)} C {X,(t), r , , ,  Fib(t), Ili,}. 
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This proves (et). To prove (13), we consider the path K~:=/z, ~, which is a p.o.b.p. 

of ~ and a n.o.b.p, of ~,.  Applying Proposition 2 with ~ ,  ~ , /x  replaced by 

~ ,  ~ ,  K~, we obtain a factorization K~ = K;K';K'7 with the properties described in 

Proposition 2. In particular, since ~ < ~ ,  we obtain by (e') that if K'~ is 

non-trivial, then it is on the boundary of ~ .  Considering the sequences of 

regions for the l.h.s, factorizations of K] and r "  in M, we conclude that both of 

them contain at most one region from ~¢'. Therefore I¢'n{P~I,P~2,...,E,o~} 

contains at most 2 regions, as required. 
Let ¢/o = U.~ ¢/(~). Using 3 °, 6 ° and 7 °, we obtain 
8 °. Card(°/4r\ 0//o)_-< 6k _---3h 3. 

Let ~ C f l  be the set of all boundary regions II E f t  (i.e. consists of all 
regions H E f~ such that bd ( I I )n  bd(M) contains at least one edge). Then, 

obviously, 
9°. card(G) =< I t° I. 

10 °. Let F E q/o, II E f~ and d(F, I I ) =  1. Then II E ~ .  

Indeed, by the definition of q/o, we have F = F0 for some i,j (1 _-<i= < k, 

1 < j  < h(i)). By Lemma 6 and Definition 26, ol(Fij)-~y(F~i)-~/3(F0)8(F~j) is a 
p.o.b.p, of F~j. Here ot(F~j) is on the common boundary of Fij and ~,  E f2,  while 

by Proposition 2(h), /3(F~) is on the common boundary of F0 and W, E f2. 

According to Lemma 6(d), if y(F~) is non-trivial then y(F~) = 6(F~_~), where 

F0-~ ~ .~'(~). Then, of course, d(F~, F~-t) = 1 and F~-t ~ fit. The region F0-1 has 
common boundary edges with ~ and W~ ; therefore Fij_~ ~ o/¢.. 

Similarly, if 8(F~) is non-trivial then for F~+, we have 8(F~i)= y(F,~+~), and 
F~+~ ~ ~V'. 

This proves our assertion. 
Let H ~ f ,  \ (~¢" U ~ )  and let ind(II) = doeo + d~e~ + d2e2. Then do = 0 because 

II is an inner region of M and d2 =< 1 because II ~ o/¢. Since ~ satisfies D(8) and 
D(6; 1), we obtain d~ => 7. By 10°,. for each F ~ f~  such that d(II, F) = 1 we have 

F I~ q/o. Hence: 
11 °. In 2~ r, for each region I I ~  fl\(o/4r O ~ ) ,  &a(H)_->7, where dM(II) de- 

notes the index of II in AT/. 

The map 37/is connected and has h = card(fz)  holes (i.e. bounded connected 

components of compl(/~l)). We apply to hTlr formula (3.1) from [1], p. 243, with 

p = 3, q = 6. Since X[3 - d(v)] -<_0, we obtain 

3(1 - h ) =  < 1  ~ ( 6 -  d,~ (1-I)) 

where the sum is taken over all regions II in 
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Since Reg(/v/) = (8-1 \(~g/" 12 ~ ) )  tJ ((~V" 12 ~ ) \  q/o), we can write 

~ ( 6  - d,;, (11)) _-> 6(1 - h) - ~2(6 - d,:, (II)) 

where in ~ the sum is taken over all regions II E 8-~ \ (o/¢ 12 ~ )  and in ~ the sum 

is taken over all regions I I E ( ~  r O ~) \q /o .  

By 8 ° and 9 °, card((°W 12 ~ ) \  q/o) ----< 3h 3 + I o~ I, hence 

X2(6 - aM (II)) ----- 18h 3 + 61,0 I- 

On the other hand, in view of 11 °, we have 

X~(6 - dM (II)) _--< - card(8-~ \ ( ~  t3 ~ )). 

We obtain 

card(8-1 \ (o/#. 12 $8)) _--- 18h 3 + 6h + 61,0 [ - 6. 

Therefore 

card(8-1 \ q/) =< card(8-1 \ q/o) ----< card(8-1 \ ( ~  O ~ ) )  + c a r d ( ( ~  12 ~ )  \ q/o) 

--<21h3+6h +71,ol-6. 

The proposition is proved. 

§5. Ordered n-rmfl~ed maps 

5.1. Conditions (SC,). Given an ordered 2-ranked map, we defined condi- 

tion (SC); when this condition was satisfied, we constructed a derived map. We 
now extend this idea to arbitrary n. 

More precisely, we shall introduce a family of conditions (SCi), 0 =< i <= n - 1, 

where each (SCj) is stronger than (SCj_I) and for any ordered n-ranked map 

. a  = (M, {8-~, • •., 8 ,  }, < ) (see Definition 12) satisfying (SC,) we shall construct a 

sequence 

(1) d/~°~ = M, . a  ~'), M~2~, ..  ., . a  ~° 

where . a  ~) is an ordered (n - ] ) - r a n k e d  map. 

The inductive definition is as follows: 

(1) . a  satisfies (SCo) if, for any region ~ in M, clos(~) is simply-connected. 

(2) Assume that (SC,-I) is defined; let M satisfy (SCH)  and let d/c°)= 

d/, .,¢/~),.at2), . .  ., M °-~) be  the corresponding s e q u e n c e . . a  ° -"  is an ordered 

(n - i + 1)-ranked map. We can write 

Mo-,) = (MO-1), {8-~'-'), 8-~+-]'), • •., 8-~-')), < ), 
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where 3"~ '-1) is the set of regions of M "-1) of rank j - i + 1. Form an ordered 

2-ranked map 

(2) .,~/~,-,): = (Mti-- ') ,  {~"{'--1), ,.~'~/+/1) O ' * "  O ~"{~--1)}, ( ) 

changing the rank of all regions • with rank(O) > 1 to rank 2. We shall say that 

d/  satisfies (SC~) if (d/ satisfies (SCH) and) the ordered 2-ranked map ~o- , )  

satisfies condition (SC). If this is the case, d/m is constructed as follows: 

(3) d / ° ) :=  (Mr'), l art')w,+1, ,, ,+2,arc') . .  ., 8r~)1,, < )  

where M t° is the derived map of ~o- ,) ,  8r~n is given by 

~ n : =  {O'[ • E ~-~,-1,1, i + 1 =< l _-< n, 

art  '-1) I I arc,) U arc,) U "  • U 3"~ ) is induced from .-,+2 ,-, and the order relation " < "  on ,,,+2 .-~÷3 

• . .  U ~'~-1) by the mapping • ~ O'. Since M m is a derived map, it is normalized 

by Lemma 12 and regular (see Definitions 6, 12 and 24); int(M tn) = int(M) is 

connected; 3 ,  corresponds in one-to-one fashion 

O~, O ' ~  O " ~ , "  " ~ O  ") 

with 3"~); therefore 3-~ ) is non-empty. For O , ~  in M t° with 1 < rank(O)< 

rank(Xt,) we have O < ~ .  Therefore, according to Definition 12, d/to is an 

ordered (n - /)-ranked map. The sequence 

d/to) = d/, d / m , . . . ,  d/o-,), d/o) 

is thus constructed. 

If O E R e g ( M )  and rank(O)> i, we let cI~ ° denote the region of M m 

corresponding to • under the mapping 

(4) • ~, O' ~ tO')' =tl¢' = O t2) ~ . . .  ~ O t'-') ~ tOo-n) ' = O m. 

For example, let, in Fig. 58, d / =  (M,{~',, 3"2, 3"3, ~'4}, < )  be an ordered 

4-ranked map, where 3"2 = {O, ~}, 3"3 = {F}, 8r, = {A} and • < • < F < A. d/  

satisfies (SCa) and the sequence d/co), d/m, d/t2), d/t3) is as shown in Fig. 58. We 
have 3"~2 ~ = {O m, ~tal)}, 3-~ = {l"m}, 3-~,) = {Am}, 3-t3 2) = {1~2~}, 3"~3) = {A(2~}, 3"~3~ = 
{At')}. 

5.2. Transversals and projections in ordered n-ranked map,  Let d / =  

( /~  {3"1, 3"2,'' ", 3"~ }, < ) be an ordered n-ranked map satisfying condition (SC,) 
for some /, 0_-< i < n. Then we have the sequence (1) defined in the previous 

section. Let • E Reg(M), rank(O) > / ,  and let tt be a boundary path of • m. By 

the construction of d/on, M m is the derived map of .~"-~;  we can thus speak of 



Vol. 41, 1982 SMALL CANCELLATION THEORY 69 

III i 

dl~°~: ,/2 ,.4.1 ro d l t z  ~ ~11 rv 

Fig. 58. 

the projection prM,-,,(t~; ~ '-~),  which is a boundary path of ~ ' -~ .  We can now 
take its projection to ~ - ~ ,  and so on, cntil we obtain a boundary path of 
which we call the projection of/~ to ~.  Similarly, we define the right and left 
projections of/~ to ~,  the shadow of/~ with respect to • and right and left 
transversals and projections of a vertex v ~ bd(O°~). More precisely, we have the 
following definition. 

DEFINmON 32. Let ~ E Reg(M), rank(O) > i, let v E bd(~°)). For h = 
/, i - 1, . .  -, 1, 0, the left and right projections lpr~ (v; ~h~), or simply lpr(v; ~h)), 
and rpr~(v;~ch~), or rpr(v;~  ~h~) from v to ~h~, and the left and right 
transversals LT~ (v; ~h~) or LT(v; #~h~) and RT~ (v; ~h~) or RT(v; 4~ ~h~) are 
defined recursively, as follows: 

(5) lpr(v; ~o)) := v, lpr(v; ~t-l~) := lpra~,-,(lpr(v; ~')); ~s-a~), 

(6) lpr(v ;~<o):= v, rpr(v; ~H~) := rpr~,,-l,(rpr(v; ~o) ;  ~,-a)), 

(7) LT(v;~'~): = v, LT(v;d~t-l~):=LT(v;~C°)LT~,,-,,(lpr(v;~'));~'-l)), 

(8) R T ( v ; ~ ° ) : =  v, RT(v;dP~'-l)):=RT(v;~'~)RT~,,-,,(rpr(v;~c'));~"-~), 

where 1 -< ! _-__ i. 
Let # be a boundary path of ~o .  The left and right projections lpr~ (/z; ~h~), 

or simply lpr(/z;~ ~)  and rpr~(/z;~ ~ )  or rpr(/x;~ ~ )  of # to ~h~, the 
projection pr~ (/z; ~ )  or pr(#; ~h~) of/.~ to ~ and the shadow S~ (/z, ~h~) or 
S(/~;~ ~ )  of/x with respect to ~ )  are defined recursively, as follows: 

(9) lpr(/~; ~'~) :=/z, lpr(/~; ~ - ~ )  := lpra~,,-,(lpr(/x ; ~o) ;  ~i/,-t)), 
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(10) rpr(tx ;~"~):=/~, rpr(/~ ; ~ " - ' ) : =  rpr~,,-,(rpr(~ ;~" ' ) ;  ~ " - ' ) ,  

(11) pr(/x ;~"~):=/z, pr(~ ; ~"-'~): = pr~,,-,,(pr(/x ; ~ " - ' ) ;  ~"-')), 

S( /z ;~  °)) consists of the edges and vertices of /x  and 

(12) S(/x ; ~ " - ' )  := S(/z ;~,o) U So-,(pr(/-~ ; ~,o); ~,,-o) 

where 1 _<- 1 =< i. 

As an immediate consequence of the definitions we have: 

LEMMA 26. Let M be an ordered n-ranked map satisfying condition (SCt) for 

some l, 0 <= l < n. Let • be a region in M such that rank(~) > / .  

(a) Lemmas  14 and 15 remain valid when ~ is replaced by ~ ' )  and ~k is 

replaced by ~kj.  

(b) Let k <= i; let tz = tz~tz2 be a non-trivial p.o.b.p, of, ~"~. Parts (a), (b), (c), 
(d), (e), (f) of Lemma 7 remain valid when dp is replaced by ~tk). 

(c) Lemma 18 remains valid when the condition ~ if2 is omitted, ~ is 

replaced by ~"~ and ~ is replaced by ~ .  

5.3. Submaps. Let M = ( M , { f f , , f f 2 , " ' , f f , } , < )  be an ordered n-ranked 

map satisfying condition (SC~) for some i, 0 = i =< n. Let N be a regular submap 
of M such that int(N) is connected. Denote q/j:= ~ (3 Reg(N). Let m be 
maximal such that 0//,, ~ ~ .  The linear order " < "  on 8"2 U . .  • U ft.  induces a 
linear order on °//2 U . . .  t.J q/m, which we again denote by " < " .  Then, by 
Definition 12, N = (N, {q/~, q/2,'" ", °//m), < ) is an ordered m-ranked map. The 
following definition extends Definition 28. 

DEFINITION 33. k-submaps. Let k _-< i. Let Q be a submap of M. We call Q a 
k-submap (of M) it there is a subset °/4/" of ff~+~ U . . .  1.3 ~-. such that 

supp(O) = [..J c los (~) ) .  
~E'W" 

LEMMA 27. Let k <-_ i. Let N be a regular k-submap of M such that int(N) is 

connected and let m be maximal  such that q/,, = ~,~ f3 Reg(N) ~ ~ .  

(a) The ordered m-ranked map N = (N,{°//,, --- q/m}, < )  satisfies condition 

(SCk), and N ~h~ is a (k - h ) - s u b m a p  of M th~ for h = 0 , 1 , . . . , k .  
(b) For any 1, h, h <- 1 <= k, a region • E Reg(N) such that rank(qb) > 1, a vertex 

v ~ bd(qW ~) and a boundary path i.t of ¢b ~°, we have 

LTx (v; ~t")) = LT~ (v; @th)), RTx (v; ~th)) = RT.~ (v; ~th)), 
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lprx (/z; ~h)) = lprx (/z; O~h)), rprx (/x ; ~h~) = rprx (/x ; O~h)), 

This lemma immediately follows from Lemma 20 and its Corollary. 

5.4. A technical lemma. 

LEptA 28. Let M = (M, {J-~, . . ., ~,} ,  < ) be an ordered n-ranked map satis- 

fying (SC,) for some i, 0_~ i < n. Let Op be a region in M of rank > i and OP °) the 

corresponding region in M ~°. Let lx be a non-trivial p.o.b.p, of dpto. Assume that 

the following are given: 

(o 0 a factorizafion tz = ~llz2"'" tzh, where each tzj is non-trivial; 

(6) a subset S of the set of paths {tz~, I-~2,'" ", ~h} such that there is no j, 

1 <- j < h, for which both I~j ~ S and I~j÷~ E S; 

(~1) a factorization pr(/~; ~)  = K111K2. 
Then there exist factorizations 

(13) tz = 0'0102030" 

and 

(14) v = 616263~)' 

with the following properties: 

(a) I f  Ok is non-trivial then Ok = Izj~ for some jk, k = 1, 2, 3. 

(b) I f  Ol is non-trivial then O, ~. S and ¢k~ is a subpath of pr(0,; ~).  I f  O~ is trivial 

then dp~ is trivial. 

(c) I f  02 is non-trivial then 02 ~ S and for some ~o 

(a) ~o¢b2 is a head of pr(02; ~);  
([3) lpr(0'0l;~)Uo = ~4~,. 

I f  02 is trivial then q~2 is trivial. 

/ 
RT ~LT 

Fig. 59. 
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(d) I f  03 is non-trivial, then 03~S~ ~3 is a head of pr(03;O) and 

1pr(0'0102;~) = x1~152. I f  03 is trivial then ~3 is trivial. 

(e) I f  ~ is non-trivial, then 03 and 0" are non-trivial, ~3 = pr(03; 40 and 

rpr(0"; ~ )  = ~K2. 

(O 0102 is non-trivial. 

(g) I f  xl is trivial then 0' is trivial (see Fig. 59). 

PROOI:. If r l  is non-trivial, let j be the maximal integer 

lpr(/zl" • •/A'-I; ~ )  is a head  of K1; if K1 is trivial, let j = 1. 

Le t  j '  be the minimal integer such that  j'>=j and Klv is 

pr(/zl • • •/~r; ~) .  
For  some x '  and K" 

such that  

a head of 

(15) pr(/zj . . .  lh' ; ~ )  = K' vx" 

where 

(16) xi = lpr(/zl • • •/zj-1; ~ ) r ' ,  K2 = r"rpr(~r+l  • • •/~, ; ~ )  

(see Fig. 60). Define: 

(17) 0' :=/-~1 " " "/~j-1 

(if ] = 1, this means  that  0'  = o(/.~)). 

We now consider the different possibilities, 

relations that  define 01, 02, 03, 0", ~1, {~2, ~3, ~J, K0. 

specifying in each case the 

Case 1. j = j '  a n d / ~  S. 

Take  01 : = / ~ ,  02 :=  t(/~j), 03 "~--" t(/~j), 0" :=/~j+l" • •/~h, 

~ 3 : = t ( v ) ,  $ : = t ( v ) ,  Ko:=t (v)  (see Fig. 61). 

q~l: = v, (#2 : :  t(v), 

/ 
ill' Pi 

Fig. 60. \ 
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o,. a,=Ps 

tip) LT 

Fig. 61. 

2 

Case 2. j = j '  and /~j ~ S. 

Take 01:=o(/.~j), O2:=/~j, 03 := t(/~j), 0 ' :=/~j+l '"/~h, St :=o(v) ,  ~2:=v, 
4,3:=t(v), , := t (~ ) ,  K0:= K' (see Fig. 62). 

Case 3. j ' = j + l ,  /~j~S and/.~j÷IES. 
Take 01: =/~j, 02: =/~.1, 03: = t(/~j+~), O": =/h+2" • "/~h. Since j is maximal, r '  is 

a head of lpr(/~j;~), and since ] '  is minimal, r"  is a tail of pr(/~j.l;~). Hence 
there exists a factorization v = $152 such that 

lpr(0~; ~) = r'$1, pr(O2; ~) = th2r". 

Take th3:=t(v), $:=t(v) ,  ro:=O(th2) (see Fig. 63). 

r . . ( p l ~ ~  

Fig. 62. 
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L, 

Fig. 63. 

Case 4. j ' = j + l ,  m~-S a n d / z j + l ~ S .  

Take  01 :=/zj ,  02 :=  t(/~),  03: =/zs+l , 0 " : =  txi+2. • •/Zh. The re  is a factor izat ion 

v = ~b~b3 such that  

lpr(0,;  ~ )  = K'61, pr(03; ~ )  = ¢k3K". 

Take  also tO2 :=  t(~b0, ~b: = t(v),  K0 :=  o(~b3) = t(thl) (see Fig. 64). 

Case 5. j ' = j + l ,  I~sES and p . j÷ lgS .  

Take  01 :=  o(/zj), 02 :=/~j, 03 :=/xs÷l, 0 " : =  ~j+2" • • p.h. The re  is a factor izat ion 

v = th24,3 such that  

lpr(02; ~ )  = K'~b2, pr(03; ~ )  = 63K". 

T a k e  also 4~1 : = o ( v ) ,  qJ:= t(v),  Ko: = K' (see Fig. 65). 

2 
Fig. 64. 
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Fig. 65. 

Case 6. j ' = j + 2 ,  gsfi¢-S, g~+,~S, t%2~S. 
Take 01: = ttj, 05: = gj+,, 03 :=  tt~+2, 0": = gj+3" • • tth. There  is a factorization 

v = ~klck~4,3 such that  

lpr(0,; ~ )  = K'Ck,, lpr(0~; q~) = 4,2, pr(03; ~ )  = ~k3K". 

Take  also q , :=t (v) ,  Ko:=o(~k2) (see Fig. 66). 

Case 7. j'>=j+2, g~ES and gj+~ES.  

Take  Oa:=l~, 0::=t( /~j) ,  03:=~+~,  0":=/~j+~"- /~h.  There  is a factorization 

v = 4~4~3qs such that  

lpr(01;~) = K'~b,, pr(03;~)  = ~b3, rpr(/z~+2.., t t r ; ~  ) = ~K". 

Take  also d~2 :=  t(~bl), Ko:= t(~bl) (see Fig. 67). 

2 
, o,= ~'s., o~= ~'i+, o, = ~s 

Fig. 66. 
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Fig. 67. 

Case 8. j '  >- j + 2, #j E S and tzj+l~S. 

Take 01 := o(tt~), 02: =/zj, 03 :=/z~+t, 0":=/z~+2. • •/~h. There is a factorization 

v = $ 2 ¢ 3 ~  such that 

lpr(02; ~ )  = K'$2, pr(03; ~ )  = ¢3, rpr(/~m" • •/~r; ~ )  = SK". 

Take also ok1 :=o(v) ,  Ko: = x '  (see Fig. 68). 

Case 9. j ' > / + 2 ,  p ~ S , / z m E S  and ~+2ti~S. 

Take 0t : = /~ ,  02: =/z;+l, 03: =/~+2, 0": =/~+3 • • •/zh. There is a factorization 

v = ¢ ~ 2 q b 3 ~  such that 

lpr(01;~) = x'tbl, lpr(02;@)= 4)2, pr(03;@)= 4'3, rpr(/~j+3.., p , r ; ~ ) =  #K". 

Take Ko := o((k2) (see Fig. 69). 

Fig. 68. 



Vol. 41, 1982 SMALL CANCELLATION THEORY 77 

Lr X 

Fig. 69. 

It is easy to check that  these 9 cases exhaust all the possibilities. In each case 
we have factorizat ions/ t  = 0'0~02030" and v = ~b~02~30 that satisfy conditions 
(a), (b), (c), (d), (e), (f), (g), and so the lemma is proved. 

06. Paths on the common boundary of regiens in M °) 

The  following theorem is the central result of the theory. 

THEOREM 4. Let ¢ / /= (M~{Sr l , - . - ,S r .} ,<)  be an ordered n-ranked map 

satisfying condition (So) (see 2.4). Let i be some integer, 0 <= i < n. Assume that 3( 

satisfies (SC0. 
Let • and • be regions in M, of ranks r > i and s > i, respectively. Since 

satisfies (SCt), we can speak of the ordered ( n - O - r a n k e d  map .~o)= 
(a,r,o sar,~ . 8r"~ <).  Consider the regions ~,o and xI ~i) in M °) corresponding . t r a  ~ 1 . ' - I  J + 1 9  " "9  n .1"9 

to • and ~ .  Let lt be a non-trivial p.o.b.p, of ~,o which is also a n.o.b.p, of ~t ~j). 

Then: 

( '  ) (1) pr(/~; ~ )  E ~ ~ ;  j=~ 13'+'-Jej + e, 

(see Definition 9) (see Fig. 70). 
Moreover, let • be a subpath of  pr( /~;~) ,  i.e., for some w', to", 

(2) pr( / t ;  ¢,) = ¢a'l-oJ". 

Then either 

O) 
i 
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Fig. 70. 

or there exists a factorization 

(4) 

such that 

(5) 

and 

(6) 

(see Fig. 71). 

'r = r l  0¢2 

• 1, ':'2 E ~ ~;  ~ • 13~+l-~ej 

o ~ ~¢(,~; e~) = ~(q,;  s )  

More precisely, there exist two simple paths r/, 17' and a boundary path ~ of 

such that 

(7) r/, r / 'E  Br(i), 0 T r/O/'-' 

(see Definitions 8, 9) and 71, r/' have the [ollowing additional properties: 

(A)  There exists a [actorization r~ = r/lr/2 such that 

(ix) t(r/1) = 0(712) is a vertex on Iz, ,11 is a path in S(/z ; ~)  and r/2 is a path in 

s(~; ~I,); 
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Fig. 71. 

(fS) denoting by Ixo the head of ~ such that t(/~o) = t(~l), we have 

oJ '~- , .  LT(o(/~); CI))-1~1~0~11; 

(~/) if ~ < ~ ,  then 72 is trivial; if ~ < ( } ,  then ~1 is trivial (see Fig. 72). 
(B) The vertex t(~) is on the path pr(/~ ;~) .  If  oJ' is trivial, then, denoting by Ir3 

the (minimal) head of pr(/.~;~) such that t ( r / )=  t(~'3), we have 

(~) ~'3E ~ ~ ;  .= ~-  13~+'-Jej ; 

Fig. 72. 
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([~) . 3 ~ ,  RT(o(//.);~I0-t/.toV/2 (see Figs. 72 and 73). 
Similarly: 

(A') There exists a factorization ,l '=  *l[*l~ such that 

(a) t(,l[) = o(~;) is a vertex on tz, 7[ is a path in SOt;~) and ,~  is a path in 

sty, ;,I,); 
(~) denoting by ~ the rail of ~ such that o(~6)=t (~) ,  we have 

• 2~o" "7 n;/z~RT(t(tz);~); 

(~1) if ~P < * ,  then ~ '~ is trivial; if W < ~P then 7? ~ is trivial. 

(B') The vertex t(~ ') is on the path pr(/~; *). I f  co" is trivial then, denoting by ,4 

the (minimal) tail of  pr(/~; * )  such that t(~') = o(,4), we have 
(a) , , E  ~(qt;XJ.,~. lY+'-~ej); 
(j3) , ,  ~,n;-'/z~J_.T(t(/z); *).  

COROLLARY 1. Let ~ be an ordered n-ranked map satisfying condition (So) 

and condition (SC4) for some i, 0 <- i < n. Let ,a °) = t"*l*~°~, l--~+l,t°r") .. ., 3"~)}, < ) be 

the ordered ( n -  O-ranked map defined in 5.1. Recall that 3 ~ k  is the set of 

regions of rank k of ~"~. 
Let ~PE 3,,  r > i, and let v be a non-trivial boundary path of cb °~. I f  

E O°)(Y~k=l ckek) in .,fro) (see Definition 30), then 

Fig. 73. 
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p r ( v ; C P ) E ~ ( ~ ; ~ c ' 1 3 i + X - ' e i + ~ c k e i ÷ k )  
j = l  k_~l 

where c = ~ 'k~ ' l  Ck. 

PROOF. By Lemma l(a), Lemma 15(g) and Lemma 26(a), we may assume 

without loss of generality that v is a p.o.b.p, of qb °). By Definition 9, we can write 

v = v~v2" • v,,, where each Vh is a n.o.b.p, of some region ,T,~i)~:h ~--~ "Jq(h),OF(i) q ( h ) >  i, 

and for any k _-> 1, 

card{h ]1 _-< h _-< m, rank~,,~(~ ~) = k} = card{h I1 <= h <-_ m , q ( h )  = i + h}<= CE. 

By Lemma 7(d) and Lemma 26(b), 

pr(v; qb) = pr(v2 v2""  vm ; ~ )  = trltr2 • • • tr., 

where each trh (if non-trivial) is a subpath of pr(vi ;~) .  By (1), 

p r ( ~ ; q ~ ) E ~  ~ ;  13 es+eq~h) , 

and hence, by Lemma l(b), also 

trh E ~ ~;  1~ es + eq~h) . 
j = l  

Since m _-< c = E~>~ Ck and E~=~ eqth)--_ < Ek__-~ Ckei÷k, we obtain 

h =1 j = l  

C_ ~ ( * ;  m -lY÷'-'e, + ~ eq,h) C_~' * ;  ~ c . l Y ÷ ' - ' e s  + ~c~e,÷~ I . 
j = l  h = l  j = l  k ~ l  / 

The corollary is proved. 

COROLLARY 2. Let ~ be an ordered n-ranked map satisfying condition (So) 

and condition (SCi) for some i, 0 <= i < n. Then ~t ti) satisfies conditions D(8) and 
D(6; 1). 

OF") with a boundary cycle v PaooF. Suppose that there is a region ~ti~E ~,i+~ 

such that v ~ ~°)(6ei + e2) in ~t "). Then, by 5.1, for some k >-_ 2, v ~ ~°)(6ei + ek) 
in .,¢/t~). By Corollary 1, 

pr(v; d~) E ~ (d~; ~__ 7"13'÷~-Jej + 6ei÷, + ei÷k) . 



82 E. RIPS Isr. J. Math. 

By Lemma 7(0 and Lemma 26(b), there is a head or of pr (v ;~)  which is a 

boundary cycle of ~,  and then 

~ E ~  ~; 7.13i÷~-Jej+6e~+,+e~÷k C_~ ~;  7.1y+l-Jej+6ei+,+e~+k . 

This contradicts (So) since • E ~÷1. Therefore there is no such ~o) in .,~oJ, and so 

.,~') satisfies D(6; 1). 

The other assertion can be proved in similar fashion. 

The corollary is proved. 

PROOF OF THEOREM 4. We proceed by induction on i. 

Consider the case i = 0. Then • = ~o), ~ = ~i~o~, ~ '  is on the common 

boundary of q~and ~ ,  and therefore pr(~; ~)  = ~ = pr(~; ~). Since ~ satisfies 
(SC~), clos(II) is simply-connected for each region I I E  Reg(M). The path ~ is 

non-trivial, • is to the left of ~ and • is to the right of ~ (see Fig. "/4), and so 
~ ¢  ~ .  By assumption, • E ~, and -tr ~ ~r. Hence, by Definition 9, each 

subpath of/.~ belongs to N(q~; e,). Then, by Definition 9, 

pr(~ ;~)  = ~ E ~(q~; e,). 

Let p r ( ~ ; ~ ) =  ~o'r~o". Take ~ :=o( r ) ,  n ' := t ( r ) ,  r , :=o0"),  0:-- ~-, r2:=t0-), 

~: = ~-. By Definition 9, n and 71' belong to Br(0). Conditions (4), (5), (6), (7), (A), 
(B), (A'), (B') are obviously satisfied (see Fig. 75). 

Now let i > 0. By 5.1, condition (SC,) implies (SC~) for any 1 < i. Therefore, by 

induction hypothesis, we have: 

oj' t 9(p~ 

Fig. 74. Fig. 75. 
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1 °. All the assertions of Theorem 4, Corollary 1 and Corollary 2 hold 

whenever i is replaced by any 1 < i. 

In particular, for any j < i, we have: 

2 °. The ordered 2-ranked map 

= (M% u u... u <) 

satisfies conditions D(8) and D(6; 1). 
Since .4( satisfies (SCj+t) for any j </ ,  it follows from 5.1 that: 
3 °. ~ satisfies condition (SC). 
4 °. Let 0 _- ! _ i. Let F be a region in M of rank > 1. Let v be a vertex on the 

boundary of I "°). Then 

( '  ) p r ( v ; F ) E  ~'  F; ~ 2.1Y-Jej . 
j - I  

We proceed by induction on I. If l = 0, there is nothing to prove. Let l > 0. If 
pr(v; I ~'-1~) is a single vertex, then by the induction hypothesis, 

pr(v;r)=pr(pr(v;~'-l~);r)~.~ F;~ ' .2 .1Y -1 c _ ~  F;~ ' .2-1Y . 
i~1 j - i  

Assume, then, that pr(v; I "t'-') is a non-trivial path. In view of 2 ° and 3 °, Lemma 

24 gives 

pr(v, I ~'-~)) E I~H)(2el) 

in d~ ° - ' ,  hence in d~ °-1~. Hence, by 1 ° and Corollary 1, 

/-1 pr(v;F)=pr(pr(v;IxH');F)E~(F;j~.~2"13'-'e'+2e')=~'(F;~2"13'-'e') 
5 °. Let 0_--< l _-_ i and let F be a region in M of rank > l. Then clos(~ °) is 

simply-connected. 

Indeed, if l = 0, then 1 ~t) = F, and then dos(F) = clos(1 ~)) is simply-connected 
since d~ satisfies (SCo). If l _-> 1, then ~o  is a region in M °J, the derived map of 

the ordered 2-ranked map ~o-~). By 3 °, ~ o - ,  satisfies (SC) and therefore 

clos(1 ~'~) is simply-connected. 

By assumption,/x is a non-trivial path which is a p.o.b.p, of ~to and a n.o.b.p. 

of q,~o. In view of 5 °, we obtain: 

6 °. • ~ ~ and/~ does not contain a boundary cycle of ~to. In particular,/z is 

simple. 
Our next goal is to prove the following statement: 
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((2) Either ~-E~(O;~.tl3'+~-Jej),  or there exists a simple path 71 EBr( i )  
connecting a vertex of 1- to a vertex of pr(/~;~), having properties (A), (B) and 
such that, if I-~ is the (minimal) head of ~" satisfying t(~'~)= o( , ) ,  then 
~-~ E ~'(tb; E~.~ i. 13,+~-,e,). 

Applying Proposition 2 with ~ tb, ~ ,  ~', ~ '  replaced by .,~o-~>, ~t~-l~, at~H) ' 
~to, ~I~O, we obtain a factorization 

(8) ~ = ~ ' ~ " ~ "  

and, if/z" is non-trivial, a faetorization 

(9) /z" =/~/z~ • • • m 

with the properties described in Proposition 2. 
By Lemma 7(d) and Lemma 26(b), there is a factorization 

(10) 1" -- ~"~'"~'' 

with the following properties: 
7 °. If ~-' 0"", ~'') is non-trivial, it is a subpath of pr(/.~'; ~) (of pr(/~"; ~), of 

pr(/~"; ~)). Moreover, there are paths r~, r :  such that 
(a) pr(/~";~) = K,~"~z; 
(13) lpr(/x'; ~ ) ~  = to'~-'; 
(~) r~ rpr(~"; ~ ) =  ~,"to" (see Fig. 76). 
8°. If/~" is trivial then ~'" is trivial. 
9 °. If to' is trivial and ~'" is non-trivial, then rl is trivial. 
By Proposition 2(c), pr(/~'; Ot'-l~)~ ~t'-l)(2e0 in .,~/t'-~), hence in .~/t,-n, then, 

by the induction hypothesis and Corollary 1, 

pr(/~'; ~)  = pr(pr(/~'; ~"-~'); ~)  ~ ~ (~;  ~ 2.13'-'e~). 

Similarly, 

pr(l~";dP)E ~(~', ~. 2.13'-Jej) . 

In view of 70, we have 
10". r '  E ~ ( ~ ;  ~ - i  2"13'-Jej) and r "  E ~'(~; ~'.j=l 2.13'-Jej). 

Similarly, we obtain from Proposition 2(d) 
11". pr(/z'; ~ )  E ~ '(~;  E~.I 4-13'-~ej). 

Using Proposition 2(h), (i) and (i') we have: 
12". If /~ is not on the common boundary of ~c~-~ and ~t '°-~, then 

pr(/~'/zl; ~t') E ~ ( ~ ;  Z~=~ 5-13'-Jej). 
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Fig. 76. 

Comparing (10) and 10 ° we obtain 

13 °. If ~-" is trivial then ~-= cq-"E ~(~;Ej.14.13'-Je~)c ~(~;Ej=~ 13'+~-Jej). 
In what follows, we assume that r" is non-trivial. Then, by 8 °, ~" is also 

non-trivial and there is a factorization (9). 

Let S be the subset of {/.~i,/z2," ",/zh} defined as follows: 

(11) S: = {/z i I #j is on the common boundary of ~('-1) and ~t~,-~)}. 

If ~ < • then, by Proposition 2(g), (9) is the left-hand-side factorization of/~" 
in M ('-1). By 5 °, clos(~ (H)) is simply-connected and therefore/zj and/zj+~ cannot 

both be on the boundary of ~0-~). Hence either/zj~ S or/zj+~ ~ S. If • < ~, then 
we reach the same conclusion using Proposition 2(g'). 

Now apply Lemma 28 with/.~, v replaced by/~", ¢". There result factorizations 

(12) /z"= 0'0~02030" 

and 

(13) z"=  ff~ff~ff3qJ 

with the properties described in Lemma 28. 
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We have 
14". 4h E ~'(¢;E~-1 I3'-'e,). 
This is clear if ~, is trivial. If ffi is non-trivial, then, in view of Lemma 28(b), 01 

is non-trivial. Then by Lemma 28(a), 0a), 01 = p.h~$. Then, by (11) and 
Proposition 2(h), (h'), we obtain 

pr(~,; q¢'-') (~ ¢~'-U(e,) 

in ~,-1), hence in ~<,-i). Then, by the induction hypothesis and Corollary 1, we 
have 

(14) pr(0~;~) = pr(p.h; ¢ ) =  pr(pr(/zj,; ¢"-1)); ¢ ) E  ~ (¢ ;  2 13'-Je,) 
j - 1  

and then, by Lemma 28(b), also ~ E ~ ( ~ ;  Y.~.~ 13'-~ej), as required. 
Similarly, using Lemma 28(d), we obtain: 
15". ~3 E ~ (~ ;  EJ., 13'-'e,). 
We have the following possibilities: 
(1) ~ ~ ~'((b; E~.~ 13'-Je~); 
(2) 4 ~  ~r(~;~:~.~ 13'-Jej) and 0 is trivial; 
(3) ff2E ~'(¢;E~-~13'-Jej), ~ is non-trivial, to' is trivial and rpr(#2;~)ti~ 

~(xp; E~?.~ 13'-Je~); 
(4) 4 ~  ~(¢;Y-}-~ 13~-~e~), 0 is non-trivial and either to' is non-trivial or 

rpr(0~; ~I') ~ ~(' t ' ;  ~:~_; 13'-'e3. 
We consider each of these cases separately. 

Case 1. ~ t ~  ~(¢;EJ-~13'-~e~). 
In this case 4~2 is non-trivial. Hence, by Lemma 28(c), 02 is non-trivial, and 

then 02 =/~h U S. By (11), /z h is on the common boundary of ¢(,-1) and ~IaH). 
In view of Lemma 28(c) (a) we have paths r0, r~ such that pr(/~h; ¢)  = r04~2r~ 

(see Fig. 77). 
Apply the induction hypothesis with i,/~ to', r, to" replaced by i - 1, tth = 

O~, to, 4~, r~. 
Since ~2~ ~(¢;Y~-~13'-~e~), it follows that there is a simple path ~ 

B r ( i -  1) connecting a vertex of 4~ to a vertex of pr(/~;~) and having the 
following properties: 

16". Let vl be the (minimal) head of ~2 such that t(vl)=o(~l). Then 
v, E ~ ( ~ ;  Y.J-~ ~-13'-'e,). 

17". There is a factorization rl = r/l*lz such that (see Fig. 78) 
(a) t(~,) = o(~1~) is a vertex on/~.h, ~1 is a path in S(/.~h; ~) and ~ is a path in 
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Fig. 77. 

Fig. 78. 

([3) denoting by Vo the head of/~h such that t(Vo)= t(,1), we have 

roVl ,_'--1 LT(o(p.~); ~)-lVon~'; 

(T) if • < qP, then 7/2 is trivial; if qs < ~ ,  then ~/1 is trivial. 
18 ~. t(v/) is a vertex on pr(/.~; qt). If Ko is trivial then, letting v2 denote  the 

(minimal) head of pr( /~;  qP) such that t ( ~ ) =  t(v2), we have 
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1. \ 
13'-Se~) and v2 ~-% RT(o(gh);W)-'Von2. 

j - 1  l 

We can now prove ((2). 
Since by Lemma 1(c) Br(i - 1) C_ Br(i), ~/ is a simple path belonging to Br(i) 

and connecting a vertex of (#2, hence of ~- (cf. (10) and (13)), to a vertex of 
pr(g~; g'), hence of p r (g ;W)  (cf. (8) and (9)). 

Define ~'t:= ~"(htv~. Then,  by (10), (13) and 16 °, 1"t is a head of ~- such that 
t(~'~) = o(7/). By 10 °, 14 ° and 16 °, 

~'1 = r'4)~ v~ E N ~ ;  ~'~ 3.  ~ 13'-~ej + 3e, _C ~ q~; ~- lY÷~-~ej . 
j = !  

Since .,~ satisfies (So), r~ cannot contain a boundary cycle of q) and therefore ~-~ is 
the minimal head of r such that t0"t)= o(~). 

By Definitions 20, 27 and 32, the map S(g~; ~)  is a submap of S(g;q~) and 
S ( ~ ;  ~ )  is a submap of S ( ~ ; ~ )  because by (8) and (9) g~ is a subpath of g. 
Therefore  (A(~)) follows from 17~(~). (A(~/)) follows from 17°(~/). As  we know, 
05 = ~ .  Therefore,  by (8), (12) and 17°(1~), g'0'01~o is a head of g such that 
t(g'0'0~Vo)--t(v0) = t ( ~ )  and hence 

(15) go = g'O'O~vo. 

By 7°(~), Lemma 15(c) and Lemma 26(a), 

(16) ~o'~,' 7 LT(o(g); , t , )- '# LT(o(#');,t,)K,. 

By Lemma 28(c) (13), 

(17) K,$, 7 LT(o(g");  ~)-'O'O,LT(o(gh); ¢~)Ko (see Fig. 79). 

(Remember  that o(0'01) = o(g")  and t(0'01) = 0(02) = o(gh).) 
By 17°(~), 

(18) KoV, ,_% LT(o(gD; ~ ) - ' V o ~ ' .  

Comparing (16), (17) and (18), we obtain 

to'~-i = to ' r '6 ,  v, 7 LT(o(g) ;  ¢ ) - lg ,LT(o ( t t . ) ;  ¢)x,q),  vt 

7 LT(o(g) ;  ~)- 'g 'O'OiLT(o(g.h); ~)KoV, 

7 LT(o(g) ;  ~)-~#'O'O~vo~ -~ 7 LT(o(g) ;  ~)-~p.o~? ~. 
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Fig. 79. 
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Fig. 80. 

Thus, (A(13)) also holds. 
We now verify (B). By 18 °, t(r/) is a vertex on pr(/~h;~), hence on pr(/z ;~) .  

Now let to' be trivial. Then, by 9 °, Xl is trivial, and then, by Lemma 28(g), 0' is 

trivial. 

By 18 °, v2 is a head of pr(/xh;~) such that t ( , / )=t(v2);  hence the path 

~'3: = rpr(/~'0,; ~)vz is a head of pr(t~ ; ~ )  such that t(1"3)= t(,/) (see Fig. 80). 

If 01 is trivial then, by 11 ° and 18 °, 

i-1 i 1 . 13i_Jej) 
0 

Since 0' is trivial, it follows from (9) and (12) that/~" =/~1#2" • •/Zh = 0102030". If 
01 is non-trivial then, by Lemma 28(a), 01=/zl,  and by Lemma 28(b), 01 = 
/~1 t~ S. According to (11),/~1 is not on the common boundary of ~o-1) and ~ H ) .  

Then, by 12 ° and 18 ° , 

~ -3=rpr ( /z 'Ol ;~)u2E~ ~ ;  5~.13'-Jej+5e~ C ~  ~ ;  -13'-iei . 
j=l 

We have thus verified (B(a)). 

Next, by Lemma 15(d) and Lemma 26(a), 

(19) rpr(/z'0,; ~ )  _ RT(o(/z); ~)-1/z'01RT(o(/~h); ~) .  
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On the other hand, by 18", 

0o) v2 ~% RT(o(g~); qO-' yon2. 

Comparing (19) and (20), we obtain 

~-~ = rpr(/x'0,;*)v2 7 RT(°(V'); W)-'/~'0, RT(o(/~h); ~F)v2 

7 RT(o(# ); W)-~# '0~ roB2 = RT(o(g); ~t')-'#o*/2, 

hence (B(13)) is also verified. We have thus proved (C) in Case 1. 

J-1 i - j  
Case 2. d)2EA°(~;Ej=~13 e~) and $ is trivial. 
In this case, by (10) and (13), ~" = ~"~bt$24,3z". Then, by 10 °, 14 ° and 15 °, 

= r " t ' a ' " 1 " ' E ~  4); 7.13J-~ej+6ei C ~  ~;  13~+l-iej ; T WI W2 ~'13 
j = l  

therefore (C) holds. 

Case 3. ~ E  ~(~;E~;~ 13~-Jei), qJ is non-trivial, to' is trivial and rpr(#2;~) 
t~ ~ ( ~ ;  Y~.~ 13i-~e~) (see Fig. 81). 

By Definitions 17, 27 and 31, the fact that rpr(02;  att) is non-trivial implies that 
02 is non-trivial. Then, by Lemma 28(c), 02 = tth E S. Hence, by (11), 0~ = ~ is on 
the common boundary of ~o-~) and aI/~-~). 

The path 021 is a non-trivial p.o.b.p, of q~H) which is also a n.o.b.p, of ~ " - ' .  
By Lemma 15(g), Lemma 26(a), (b) and Lemma 7, 

pr(02~; ~)  -- pr(02; ~)-~ = pr(t(02); ~)rpr(02; ~)-~. 

j rJOa ; F) 

Fig. 81. 
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We apply the induction hypothesis with/, ~,  * ,  tz, ca', ¢, to" replaced by i - 1, 
q',O, 0~ -1, pr(t(02);g'), rpr(0~-';q'), t(rpr(0~';*)). Since rpr(0~l;*)li~ 
~ ' (~;  X~:~ 13t-le~) it follows that there is a simple path X E Br(i - 1) connecting a 
vertex of rpr(0~l;*) to a vertex of pr(0~-l;O) and having the following 
properties: 

19 °. Let v3 he the (minimal) tail of rpr(0~;g ') such that o(v3)= o(x). Then 
. .  | - 1  1 1'3 E ~ ( ~ ,  Y'~-I 2" 13i-Jej). 

20 °. There is a factorization X = XlX2 such that: 
(or) t0(t)  = O(X2) is a vertex on 02 ~ =/~1,  Xl is a path in S(821; W) and X2 is a 

path in S(0~1; ~); 
(~) if v, is the tail of 02 ~=/~* such that o(v4)= t(x,), then 

v3 ~1 Xl v4 RT(o(/h~);*); 

(~/) if • < * ,  then Xl is trivial; if xIt < ¢I) then X2 is trivial (see Fig. 82). 
21 °. t(x) is a vertex on pr(0~l; @). If vs is the (minimal) tail of pr(0~l; @)= 

pr(02;O) -1= pr( /~;~)  -1 such that O(Vs)= t(x), then 

vs~ ~ ( ~ ;  '~ 11 ~ . 1 3 ' - ' ¢ )  and v~/~X~lv4LT(o(/~);~). 

Take 7: = X -1. We claim that (C) is satisfied. 

/ v'-"/ ."4. \ 

Fig. 82. 
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Indeed, since X E B r ( i - 1 ) ,  by Lemma l(a), (c), 7 /EBr( i ) .  Since qJ is 
non-trivial in Case 3, it follows from Lemma 28(e) that 03 is non-trivial and 

~k3 = pr(03; (I)). Then, by 7°(13) and Lemma 28(d), 

(o'~"fflck2ck3 = lpr(/z'; (I))K1~kl~k2~k3 = lpr(/z'; ~)lpr(0'0102; (I))pr(0s; ~ )  

= pr(/~'0'010203; ~). 

The vertex o ( r / ) = t ( x )  is on pr(02;(1)), hence on pr(/.d0'0~0203;(I))= 

toq"ckl~k2ck3. But to' is trivial in Case 3, and therefore o(r/) is a vertex of 

I"d~14,24,3, hence of 1-= ¢'~bl~k24,3qrr" (cf. (2), (10) and (13)). On the other 

hand, t ( r / ) = o ( x )  is a vertex on rpr(02;~), hence on pr(/~;qt) = 

pr ( / z ' 0 ' 0~02030"g , " ;  att). Since X is a simple path, ~ = X -1 is also a simple path. 

Since to' is trivial, K~ is trivial by 9 °, and then, by Lemma 28(g), 0' is trivial. 

Then, in view of (8) and (12) we have: 

22 °. /z'01 is a head of p. such that t(p. '0,)= o(02). 

According to 21 °, v~ 1 is a head of pr(0z; (I)) such that t(v~ -1) = t(x) = o(r/). We 

have by Lemma 15 and Lemma 26(a) 

t(lpr(/x'01; (I))) = lpr(t(/z'01); q)) = lpr(o(02); (I)) = o(pr(02; ~)), 

and so rl:=lpr(p.'0~;q~)~,~ -1 is a head of pr(~;(I)) such that t(q-1)=o(r/) (see 

Fig. 83). 
If 01 is trivial then, by Definitions 17, 27 and 32, lpr(01; (I)) is also trivial. If 01 is 

non-trivial then, by Lemma 28(a), 0~=/zh, and then, in view of (14), 
lpr(01; q)) E ~(q);  X~-I lY-Jei). Using 11 ° and 21 °, we obtain 

Fig. 83. 

AI" 

~ rpr ( ~'9 t 

Fig. 84. 
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1 5e~) z, = lpr(tt '; ~)lpr(01; ~)v~-I ~ ~ (~ ;  ~ 5~" 13'-~e, + 
j = l  

1.13i+l_iej) . 
j = l  

Since d~ satisfies (So), zl cannot contain a boundary cycle of • and therefore ~'1 is 

the minimal head of ~" such that t(~'l)= o('0). 
We now check condition (A). 

Take ~/~ := Xj I, r12 := X~ -1. Then, in view of 20°(a), t ( rh )=  o(X2) is a vertex on 
/~, hence on/z. Since/zh = 02 is a subpath of/~, we have also S(0~1; ~b) C S(g ; ~ )  
and S(0il; ~ )  C S(/z ; ~).  Therefore 20°(a) implies (A(a)). (A(~/)) follows imme- 

diately from 20°(~/). 

Define 

(21) /.to : =/x'01 u~ 1. 

In view of 20°(13) and 22 °, go is the head o f / z  such that t(/.~o)= t(x1)= o(x2)= 
t(rh). By Lemma 15 and Lemma 26(a), 

lpr(/x'01; ~ )  "7" LT(o(/x); ~)-'/x'01LT(o(/z/~); ~).  

In view of 21 ° and the fact that in case 3 to' is trivial, 

rl = lpr(tt'01; cI,) z,~ -1 T LT(o(t t);  ~)-t  it'01 u;1X2 = LT(o(g);  ~)-l t ton ~", 

so that (A(13)) is also verified. 
We must now check condition (B). 

The vertex t ( ~ ) =  o(x) is a vertex of pr(02; ~) ,  hence of pr( t~;~).  In view of 
19 ° and 22 °, 1"3: = rpr(/z'01;~)v31 is a head of pr(/x ; ~ )  such that t(~'3)= o(X ) = 

t('0) (see Fig. 84). 
If 01 is trivial then by 11 ° and 19 °, 

1 +4ei) C j--~l 2" 13i÷l-'eJ) " r 3 = r p r ( / z , ; a t , ) v 3 1 E ~ ( ~ ; ~ 4 ~ . 1 3 i _ J e j  _ ~ ( W ;  i 1 
j = l  "= 

Since 0' is trivial, it follows from (9) and (12) that 01 is a head of/z" =/~dx2 • • •/zh. 

If 0, is non-trivial then, by Lemma 28(a), 01 =/x~,. By condition (a) of Lemma 28, 

each/z~ is non-trivial; therefore necessarily jl = 1 and then 01 = tzl. By Lemma 

28(b), 01 = tZl C S, hence, by (11),/zl is not on the common boundary of ~ " - "  
and ko~-~). Then, bv 12 ° and 19 °, 
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( ) ( 1 )  
1-3=rpr(/.~'01;~)v;iE~ * ; ~ 5 ~ . l Y - ' e j  +5e, C_~ ~ ; ~ . l Y ÷ ' - ' e j  . 

j=l 

This verifies (B(-)). 
Now, by Lemma 15 and I_emma 26(a), 

rpr(~'0,; ~)  T RT(o(~); ~)-'/.~'0, RT(o(~);  ~). 

Then, using 20°(13) and (21), we obtain 

~'3 = rpr(/x'01; ~)v3'  "7 RT(o(/~); ~)-'/.t'0, v;'X~' = RT(o(/.~); $)-'#o*/2. 

Thus, (B(13)) is also verified, and we have proved (C) in case 3. 

Case 4. d~E ~(q~;E~-] lY-Jej), ~ is non-trivial and either ¢o' is non-trivial 
or  rpr(02; xI 0 E ff((xIr; ~..~2~ 13'-Jej). 

By Lemma 28(e), 03 and 0" are non-trivial and ~3 = pr(03;@). By Lemma 
28( 0, 0102 is non-trivial. By Lemma 28(a), 03 =/xj3 and then, in view of (9) and 
(12), 1 < j 3 <  h. By Lemma 28(d), 03 = txh ti~ S and then, by (11), 03 =/zj.~ is not on 
the common boundary of ~(H) and xI ~'-1). Then, by Proposition 2(h) and (h'), we 

obtain 
23 °. If (I) < xt t, then 03 =/3 (~'3 -1)) for s o m e  I~i3 -1) ~ ~MI(I-I,(I[I~)(/-I)); if W < @, then 

03 =/3(II}',-1)) -I for some II}'3-1) E ~,,-.,(xl'~'-')). 
In order to simplify the notation, we introduce the following abbreviations: 
24°.If qb<~,  then II:=Fi,,  a :=a(~ ' / t ) ) ,  /3:=/3(U'/'))= 03, y:=y(F}~-"), 

8: = 8 ") 

If W < @, then I I :=  II~, a: =/3(H~'/') -~ = 03, /31= Ot(I~/3-')) -I, y: = 8(n~i,-I))  - I ,  

8:= y(II)i/~)) -~ (see Fig. 85). 

., g 

\ 

/;--83 a =0j 

Fig. 85. 

s 
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(22) 

and 

Since 1 < h < h, Proposition 2(h), (11') yields: 
25 °. a is on the common boundary of ~t~-~) and II °-~) while fl is on the 

common boundary of II °-~) and ~I~H). Furthermore, a =pr(03;~ c~-~)) and 
/3 = pr(O3; ~'-'~). 

By the assumption, the regions ~ and xlt are of ranks r and s, respectively. 
Therefore, by the induction hypothesis, 

( '  ) pr(a; 11) E ~ II; ~'~ 13'-Jej + e, , 

i--1 ) 
(23) pr(/3; II) E ~ H; ~ 13'-Jej + e, . j-I 

By Lemma 22(a), 3' E IIt'-l)(e~) and 8 E II"-t~(el) in .~/o-1), hence in ~t~-a). Then, 
by the induction hypothesis, Corollary 1 and 4 °, 

(24) pr(~/; I I )E ~ (11; ~ 13'-'e~),. pr(~; II) E ~ (11; ~"~ 13'-'e,). 
j~l ,/-1 

Suppose that p r ( a ; I I )E  ~(II;E~:~ 13'-Jej). Then, by (23) and (24), 

) pr(a-'~,-'/3~; II) E ~' II; ~'~ 4.13'-Je~ + 2e, + e, . 

But this contradicts (So), because by Lemma 6, Lemma 7(0 and Lemma 26(b) 
pr(a-~-~/38;II) contains a boundary cycle of 11. Therefore 

pr(ot; FI) ~ ~ (FI; ~ 13'-'e,). (25) 

Similarly, 

(26) pr(/3; II)li~ ~ ( H ;  ~.~ 13'-iej). 

We now apply the induction hypothesis twice. The first application is with 
i ,~,~,/Ato' ,T,  to" replaced by i - l ,  11,~,a -~, o(pr(a-1;II)), pr(a-1;II), 
t(pr(a-l;H)) (see Fig. 86). By Lemma 15 and Lemma 26(b), 

pr(a- ' ;  II) = pr(a ; II)-'. 

Then by (25) and Lemma l(a), 

i--1 ) 
pr(a-~;II)~ ~ II; ~ 13'-Jej . 



96 E. RIPS Isr. J. Math. 

m 

~ t ; - t l  

t~ 

Fig. 86. 

Therefore there is a simple path s¢1 E Br(i - 1) connecting a vertex of pr(a- l ;  II) 
to a vertex of pr(ot-l; ~)  and having the following properties: 

26 °. Let t~ be the (mini.rnal) tail of pr(a-1;II)  such that o(tl)=o(~:0. Then 

27 °. Let t2 be the (minimal) tail of pr(ot-1;~) such that o(t2)= t(s¢l). Then 

28 °. ~:~ is a path in S(ot-1; II) and t(~:l) is a vertex both on ot -1 and pr(a-~;~) .  

(Indeed, either H° - l )~Sf Jo - , (~  °-1>) or H°-l)E~J~,,-,(xt~-~)). In both cases 

r a n k ( H ) = i  < r  =rank(D)  and we then apply (A'(~/)) of the induction 

hypothesis.) 

29*. Let t3 be the tail of a-1 such that o(t3) = t(~:0. Then t2 ~,-1 ~3LT(o(a); ~).  

We now apply the induction hypothesis again, with i , ~ , ~ ,  t~, to', z, to" re- 

placed by i - 1, II, xlt,/3, o(pr(/3; II)), pr(/3; 1-I), t(pr(/3 ; II)) (see Fig. 87). 
In view of (26), there is a simple path ~:2 E B r ( i -  1) connecting a vertex of 

pr(/3;II) to a vertex of pr(/3;',F) and having the following properties: 

30 °. Let t, be the (minimal) head of pr(/3;II) such that t(t ,)=o(~2). Then 
L 4 ~ ~( l ' I ;  E~ -'11.13,-Jej). 

31 °. Let t5 be the (minimal) head of pr( /3;~)  such that t(Ls)= t(s¢2). Then 

t5 E ~ ( ~ ;  Y.~2~ ~. 13'-Jej). 
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i 
cpt.'-,I 

Rr 
n "-'~ ~ I 7. / ~, 

T 

t~ 

LT 
t.~ 

Fig. 87. 

32 °. ~2 is a path in S(/3; H) and t(~:2) is a vertex both on/3 and pr(/3; ~) .  (Here 

we are using the fact that r a n k ( 9 ) =  i <  s = rank(~).)  

33 ° . Let t6 be the head of /3 such that t(L6)=t(~2). Then 

t5 ~,- ,  RT(o(/3); ~)-~ t6. 
We now construct the path 7/. 
Let to be the boundary path of 9 connecting the vertex t(pr(a-~;H)) = 

rpr(o(a);  9 )  to the vertex o(pr(/3; 9))  = lpr(o(/3); H) and such that 

to -- RT(o(ot); FI)-I 7-t LT(o(/3); H) 
i - I  

(see Fig. 88). 

By Lemma 7(d) and Lemma 26(b), 

pr(y-l ;  9 )  = pr(t(y); II)rpr(y-l;  II) = lpr(y-l;  II)pr(o(y); II). 

Therefore, either 

pr(y-l ;  I I) = pr(t(y); II),opr(o(y); 17) 

or 
pr(y-1; II) = lpr(y-~; II)t o~rpr(y-~; II). 
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I 1"/I;~) I"I 

Lo is a p.o.b.p, of 11 

Fig. 88. 

[7 li-~ ) 

~. is a n.o.b.p, of 11 

In each of these cases, it follows by (24) that 

i - - 1  

Now consider the boundary path L of 11 such that o(L)=o(~,)=o(~:1),  
t(L) = t(L4)= o(~2) (see Figs. 86 and 87) and ~ ~0Ll~,~4. In fact, ~ is obtained by 
reducing, if necessary, the path ~ .~4 (see Fig. 89). Then by 26 °, 30 ° and (27) 

('-' / 
(28) ~ E ~ l-I; ~'~ 2.13'-Jei + e~ . 

Let 7/ be the path obtained from ~- '~2 by deleting all its closed subpaths (if 
there are any) (see Fig. 90). 

We can now prove (C), 

\ J ') / 

~,,..,)\ 

Fig. 89. Fig. 90. 
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Indeed, we know that ~:1 ~ Br(i - 1), ~:2 E Br(i - 1) and ~ E 
~( I I ;  E~-~ 2.13'-Jej + e~). Therefore ~71~2 belongs to Br(i) by Definition 9 and 
Lemma l(a). (In fact, this point actually determined the definition of Br(i).) By 
Lemma 2, we have also 7/E Br(i). By construction, 17 is a simple path. 

In Case 4, ~b is non-trivial; hence by Lemma 28(e) and 25 °, 

(29) 4)3 = pr(03; 4)) = p r ( ~ ;  ~ )  = pr(a ;  ~). 

On the other hand, by 25 ° , 

(30) pr(03; ~t') = p r ( ~ ;  xt,) = pr(/3; ~).  

In view of (10) and (13), ~b3 is a subpath of 7. By the construction of ~1, 

o(r/) = t(~l) is a vertex of p r ( a ; ~ ) =  ~b3, hence of 1-. By the construction of ~2, 
t(ag) = t(~2) is a vertex of pr(/3; ~) ,  hence of pr(/z; xIt). Thus, B connects a vertex 

of ~" to a vertex of pr( /z ;~) .  
Using (10), (13), (29) and 27 °, we see that the path ~'1 defined by 

(31) ~'~ := I"4)~4)2~ ~ ~ 

is a head of ~" such that t(~'l) = t(~:~) = o(rl). By 10 °, 14 °, 27 ° and the assumptions 

of Case 4, 

Tt /,-1 . T1 "~- ~1(~2 2 ~ ~ O, 4~" 13~-Jej + 3e~ C_ ~ O; ~.  13~+l-Jej . 

Since d~ satisfies (So), ~'1 cannot contain a boundary cycle of • and therefore ~'1 is 

the minimal head of ~" such that t0"~)=o(rl). 
We now verify condition (A), under the assumption that • < ~t'. 

In this case we take rh: = rl, rl2:=t(rl). 
By 23 ° and 24 °,/3 = 03 =/z~. By (8) and (9),/z~ is a subpath of ~ and then, by 

32 °, t 0h )=o ( r l 2 )= t ( r l )= t (~2 )  is a vertex of /z. By 23 ° and 24 °, I I°- l )~ 
Le~,,-,,(~l,°-~)), and therefore clos(II (H~) C_ supp(S(/3;O)) C_ supp(S(t~ ;4))) (see 

Fig. 91). By 28 °, 32 ° and the construction of ~, ~:?~g2 is in c los(IP- ' ) ,  hence it is a 

path in S(/.~; 4)), and then rh = rl is also a path in S(/.~; 4)). On the other hand, 

Tie ~ t ( ~ )  -~- t ( ~ 2 )  is a vertex of pr(/3; ~) ,  hence of pr(/z; ~) .  Then, obviously, '172 is 
a (trivial) path in S(/~; ~) .  Furthermore, in view of (8), (9), (12) and 33 °, the path 

/.~0 defined by 

(32) /~o :=/~'0'0102t~ 

is the head of /~  such that t(~0)--t(~2)= t ( ~ ) =  t(~l). 

By 7 ° (13), Lemma 15 and Lemma 26(a), 
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Fig. 91. 

sfr;~,} 

(33) to'¢' 7 LT(o(g); q))-'tt'LT(o(tt*); q))K,. 

By I.emma 28(d), 

(34) K,~k, ck2 "7 LT(o(/z'); q))-'0'0,0"2LT(o(/z~); ~). 

By Definitions 16, 27 and 32, 

.(35) LT(o(/~); ~) = 3' LT(o(a); ~). 

By 29 °, 0(~/)= t(~,)= o(t3) and by 33 °, t (~)= t(~2)= t(t6). Since ~/ is a path in 
clos(YI°-')), 

(36) /'3 "7 ~t613,- 

By 29 ° , 

(37) '2 ~ ,3LT(o(a); O) (see Fig. 92). 

Using (13), (32), (33), (34), (35), (36) and (37), we obtain 

t~'¢, = a/¢'~k, ckzti' "7 LT(o(/z); ~)- ' t t 'LT(o(g"); ~)r,~b,~k,t~' 

3" LT(o(~); ~)-'/z'0'0,02y LT(o(a); ~)t2'  

"7 LT(o(tt); ~)-'/x '0'0102t6~ IlL3 LT(o(a); ~ ) t : '  3" LT(o(tt); q~)-'/x0n: ~. 
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Co:" t -. 

/ 
/ 

0(f~l 

02 

t/I 

~ °  

0ct~J 

Fig. 92. 

We have thus verified (A) under the assumption that q~ < xlt. We now verify 

(B) under the same assumption. 
We have already shown that t(7/) = t(~2) is a vertex of pr(/~; xlt). If ta' is trivial 

then, by 9 °, K1 is trivial ( remember that we assume that ~'" is non-trivial). Then, 

by Lemma 28(g), 0' is trivial. Define ¢3 by 

(38) '/'3 : = rpr(/x'0x02; qP) ts. 

We know that 

t(rpr(p."0x 02); ~ )  = rpr(t(02); xt,) = rpr(o(03); V) = 0(~5) 

because, by 31 °, t5 is a head of p r ( / 3 ; ~ ) =  pr(03; V) (see Fig. 93). Hence r3 is 

well-defined. By (8) and (9), #'0102 is a head of t~; therefore ~'3 is a head of 

pr(tz; V). By 31 °, t0"3) = t(~6) = t(62) = t(r/). By the assumptions of Case 4, if ~o' is 

trivial, then 

(39) ) rpr(02,  xir) E a~ xXr; 13~-Jet . 
]--i 



102 E. RIPS Isr. J. Math. 

17 l i-~l 

k 

e, 

pr  / e .  , ~ ' )  

~ ; ~'1 

~?1" " 

Fig. 93. 

If 01 is trivial then, by 11 °, (39) and 31 °, 

¢3=rpr(t~';W)rpr(02;W)t5E ~ W;j__~5~. 13'-Jej +4e, _C~ W; 13'+1-"ej 

If 01 is non-trivial then, since p."= ~l t~2" ' tzh  = 0~02030", it follows from 
Lemma 28(a), (b) that 0, = ~1 ~ S. By (11), m is not on the common boundary of 
cb "-1) and xI ~H) and then, by 12 °, (39) and 31 °, 

"t = rpr(Iz' lz,; *)rpr(O2; *)tsE ~. (*; ~ 61"13'-'e, + 5e,) 

1.13~+l_jej). 

In view of (So), in both cases ~'3 does not contain a boundary cycle of V, and 

therefore ~'3 is the minimal head of pr ( /x ;~)  such that t0"3)= t(r/). By (32) and 

33 ° , 

¢3 = rpr(/z'0102; ~)~5 "7 RT(o(~);  qt)-~/z'0, 02 RT(o(/3); ~)L5 

T RT(o(tx); qY)-ltL'O,O2t6 = RT(00z); ~)-]/Zo = RT(o(~);  qY)-~or/2 

because r/2 = t(r/) is a trivial path. 
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Thus, (B) is also verified, under the assumption that • < ~ .  

We now assume that x t , < ~ .  Let us verify (A). Take r/l:=O(r/), r/2: = 71. 

By 23 ° and 24 °, a = 03 = Ix6; hence, by 28 °, t(r/1) = o('0) = t(sr0 is a vertex of 

/~,  hence of/~. By 23 ° and 24 °, II ('-" E ~( , - , , (q~ ' - ' ) ,  therefore ~ 2  is a path in 

S(#;xlt), and then a9 = ~2 is a path in S(/z;xlt) (see Fig. 94). 

On the other hand, by the construction of ~l, r/i = o(r/) = t(sr0 is a vertex of 

pr (a ;  ~b), hence of p r (# ;  ~ )  and then, of course, the (trivial) path rh is in S(/~ ; ~). 

Furthermore, in view of (8), (9), (12) and 29 °, the path 

(40) tZo:= ~'0'0102~3 ~ 

is a head of Ix such that t(Ixo)= o(I,3)= t (~ , )= o ( 7 ) =  o(r/2). 
Using (31), (33), (34), (40) and 29 ° (all of which remain valid under the 

assumption that W < qb), we obtain 

w'r ,  = o~'r'(~,d)2,~ ~ 7 LT(o(/z); ~)- 'Ix'LT(o(Ix"); (I))K,6,d)2ez' 

"7 LT(o(IX); qb)-'ix'O'O, O2LT(o(ot); ~)~;' 

"7 LT(o(/.~); (t))-'/~'0'0,02~3' = LT(o(/x); (~)-~/Zo 

= LT(o(/z); ~)-'/x0o(r/) = LT(o(/z); ~)-'/~0r/] -1 (see Fig. 95). 

+;(/~;+') 

/ 

nt;-o 

'¢'3 

o(,¢1 

O'e,o, 

o(~") 

Of~) 

Fig. 94. Fig. 95. 
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Thus parts (a) and (13) of (A) are verified. Part (~/) follows from the definition 
of 7/1 and 7/:. 

Now consider (B). We already know that t(~) = t(~2) is a vertex of pr(~;  q0. If 
co' is trivial then, by 9 °, K1 is trivial, and by Lemma 28(g), 0' is trivial. Then the 
path ¢3 defined by (38) is a head of pr(~ ;q0 such that t0"3)= t(~). Proceeding 
exactly as in the case q~ < ~ ,  we obtain ¢3 E ~(qt;  2~.1½-lY+l-Je~), and then, in 
view of (So), ~'3 is the minimal head of pr(~;  q0 such that t(¢3) = t(~). Proceeding 
as in the derivation of (35), we have 

RT(o(a);  g') = 7 -1RT(o(/3); qO- 

Then, using (36), (38), (4) and 33 ° (see Fig. 96) (notice that (36) is valid under the 

assumption that • < d~), we obtain 

¢3 = rpr(/z'0102; ~)t5 "7 RT(o(/z); ~)-~lz'OlO2RT(o(a); gt)t5 

"7 RT(o(/z); ~)-'/z'O,02.),-' RT(o(/3); qO~5 -7 RT(o(p,); g')-~/~'0,02~3~ 

= RT(o(p.); ~)-'/zo~/= RT(o(p.); qO-~/ZoCh. 

oc,,I 

e, 

~J 

~b'-a/ / 
/'7 li-o / ~  

't3 ?=?z t~ '~-\Ls" 

Rr 

rt&;~') 

RT 

Fig. 96. 
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Thus, (B) is also verified under  the assumption that • < ~ .  This completes the 
proof of (C) in Case 4. Since Cases 1, 2, 3, 4 exhaust all possibilities, (C) is 
proved. 

The following statement is proved in similar fashion. 
(C)' Either rE~(~ ;E~=l l3 '+ l - Je j ) ,  or there is a simple path r l ' E B r ( i )  

connecting a vertex of I- to a vertex of pr(# ; ~) ,  having properties (A'), (B') and 
such that, if r2 is the (minimal) tail of ~" satisfying o(~'z)=o(rl '), then 

~'2 E ~ ( ~ ;  El=, ½-13'+~-~e~). 
Using ((2) and (C'), we now easily complete  the proof of the theorem. Indeed, 

if ~'~ ~(~;Y-~=~ 13~+'-Je~) then, by ((2) and (C'), • = ~t~'I = ~'~'~ for some ~'~ and 
r~. If r{ is a tail of r~, then ~'[ belongs to ~(qb;E~-t½-13H-~ei); then z = 
~'o'I ~ ~(~;E~=~ 13'+~-~e~), contradicting our assumption. Therefore there is a 

path 0 such that ~" = ~'~0"rz (see Fig. 97). 
By (A) and (A'), t(~h) and t(~/~) are vertices of/.~. Let ¢0 be the subpath of/~ or 

/~-~ connecting t(rh) to firl I) (see Fig. 97). By Lemma 15 and Lemma 26(a), 

(41) to'z,0rzto" = to'~,to" = p r ( # ; ~ )  "7 LT(o(/~);~)-~/~ RT(t(/~);~).  

Using (A) and (A'), we have 

(42) to'~-i "7 LT(o(/~);~)- '/x0r/?' ,  "r2a/' "7 r t l /~RT(t ( /~) ;~) .  

Comparing (41) and (42), we obtain 

(43) 

1 

0 

t t . ;  t 

t 

t - 1  
0 7" 7h~:o~/1 • 

"c2! 

Fig. 97. 
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Let ~ be the boundary path of • connecting t(~) = t(~2) to t(7/') = t(~/;) and 
such that ~0~,7/20/; -~ (see Fig. 98). By (A) and (A'), ~2 and 7/' are paths in 
S(/z;~); hence the path ~ indeed exists. We obtain: 

0 "7" nl~0'l~ -1 "~ ~1~'~2~7'~91--1~t~ - 1 =  7~'~ I-1. 

By (C) and (C'), the paths 7/, 7/' are simple paths and belong to Br(i). Then, by 
Definition 9, 

0 E ~ ( ~ ;  s) = .¢(~; e,). 

We have 'T1, ~/'2 E ~((1);  2~=I~ ° 13'+~-Jej) C ~¢(O;E~=~. 13'+~-Jej); hence, by Defini- 

tion 9, 

• =~O' r2E~  ~; lY+~-iej+es . 

Since z is an arbitrary subpath of pr(/z;~), it follows from Definition 9 that 
pr(~ ; ~) E ~ ( ~ ;  E~_~ 13'+~-Jej + e,). 

This completes the proof of Theorem 4. 

07. Some modifications o! Theorem 4 

7.1. THEOREM 5. Let ~ = (M, {if1,'" ", ~r}, < ) be an ordered n-ranked map 

satisfying condition (So). Let k be an integer, 0 <- k < n. Assume that if k > 0 then 

.a satisfies condition (SCk). Let N be a regular k-submap such that int(N) is 

connected (see Definitions 6 and 33). Let m be the maximal integer such that 

~Y, O Reg(N) ~ 0 .  Then, of course, 

.h" = (N, {if1 O Reg(N), ~r2 n Reg(N), • •., f t ,  n Reg(N)}, < ) 

is an ordered m-ranked map satisfying (So). 

Fig. 98. 
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We shall use the subscript M to indicate constructions (projections, transver- 

sals, etc.) for which M is the underlying map. For all other constructions the 

underlying map is .A r. An exception is made for notation of the type ~ ( F ;  c) and 

)t ~j/z where the underlying map is always ~t. 

We assume that N satisfies (SC,) for some i, k _-__ i < n. 

Let • be a region of N, of rank r > i, and W a region of M, of rank s > i ; 

assume that ~ #  xlt. Let /x be a positively oriented boundary path of q b " ~  

Reg(N °~) which is also a negatively oriented boundary path of W~ E Reg(Mtk~). 

Then 

(1) pr(/~ ; ~) E ~ (qb; ~ 13'+l-Jej + e,) . 

Moreover, let ¢ be a subpath of pr( /x;~) ,  i.e. for some to', to", 

(2) 

Then either 

(3) 

or there is a factorization 

(4) 

such that 

(5) 

and 

(6) 

pr(/z ; ~ )  = to'l-to". 

j = l  

"r = ¢10'r2 

0 E 5~(~;  e,) = ~a(O; s). 

More precisely, there are two simple paths (see Fig. 99) 77, * / '~  Bra (i) and a 

boundary path ~: of qt such that 

(7) 0 ~ */~'-1 
i 

where */ and ,/ ' have the following additional properties: 

(A) There exists a factorization 7 /=  */1./2 such that 

(a) t(*/1)= o(*/2) is a vertex on /x, */1 is a path in S(/z;xF) and */2 a path in 
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Fig. 99. 

([3) if/~o is the head of bt such that t(/~o)= t(Th), then 

oJ'l-, "7" LT(o(/~); ~)-l~oni- ' ;  

(~/) if • < ~ ,  then 72 is trivial; if • < ~ ,  then at least one of the paths ¢/1, v/2 is 

trivial (see Fig. 100). 

(A') There exists a factorization 7 ' =  ~/;v/; such that 

(a) t(~/;) = o(v/;) is a vertex on /~, v/; is a path in S ( # ; ~ )  and 7 ;  a path in 

03) if/~.~ is the tail o f /~  such that o(p.~)= t(v/;), then 

~-2to" _ n; iz~RT(t(/z);~);  

(V) if • < ~ ,  then v/~ is trivial; if • < ~ ,  then at least one of the paths v/;, v/~ is 

trivial. 

PROOF. We proceed by induction on i -  k. 

If i - k  = 0 then, by Lemma 27, N (~) is a submap of M (~) = M °) and all the 
constructions (projections, transversals etc.) in W (°) = W, W°), . .  ., )¢.(k) based on 
.N" as underlying map are the same as those based on d/. In this case Theorem 5 

follows from Theorem 4. 
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~2 is trivial ~, is trivial 

Fig. 100. 

Now let i - k > 0. 
Since (SC,) implies (SCt) for any ! < i, the induction hypothesis implies: 
1 °. All the assertions of Theorem 5 hold whenever i is replaced by any 

l , k < l < i .  

Using the induction hypothesis, we obtain: 
2 °. Let r be a region of N, of rank i, such that 1 ~-I) E 0~,_,,(~o-o). Let o- be a 

subpath of /z  which is a boundary path of F "-° (see Fig. 101). Then 

( ) p r ( ~ ; F ) E ~  F; ~ 13~-Je~ +e,  . 
j= l  

Furthermore, we have 
3 °. Under the assumptions of 2 °, if dNo-,~(~ ~-', q~"-~) > 1, then ~ ¢t(1~-'). 
Let a : =  ~(F~'-'~), /3:= ~(F"-°), ~:= ~(~-'~), 6:= 8(~'-'~). By Lemma 6 and 

Definition 26, a-~-~¢!8 is a boundary cycle of 1 ~H~. By 2 ° of Theorem 4, .~o-~ 
satisfies D(8) and D(6;1). Then, by Lemma 22, &~-~ El~- '(4e~) in .~,-o, 
hence in N °-°. By Lemma 7(d), (f) and Lemma 22(b), we can find a boundary 
cycle v~v2 of F such that v~ is a subpath of pr(~;F) and v2 is a subpath of 
pr(~$a-~y;F) (see Fig. 102). By Corollary 1 of Theorem 4, 

v2 E Nf ( r ;  ~ 4"13'-Je~). 
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Fig. 101. 

'y 

Fig. 102. 

Now, if/3 = tr then, by 2 °, vl E ~ (F ;  E}~ 13'-Jej + e,) and 

) v l v 2 ~  F; 5-13'-Se~+4ei+e, , 

contradicting (So). Therefore o '¢  ~ = ¢i(F°-')), as required. 

We now prove the following statement: 

(C) Either ¢ E ~(q~;N}=, 13'+i-Jej}, or there is a simple path ~ E Br..(i),  

connecting a vertex of r to a vertex of p r ~ ( ~ ; ~ ) ,  having property (A), 

and such that, if ¢1 is the (minimal) head of ¢ with t(¢~)--o(~), then 
~'t ~ ~ ( ~ ; E I - ~ "  13'+t-JeJ) - 

Applying Proposition I with M, ~,  ~ '  replaced by N °-1), c~ tH), c~ °), we obtain 

a factorization 
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(8) t~ = t~'t~"t~" 

and, i f /z"  is non-trivial, a further factorization 

(9) /x" =/xl/z2 • " •/zh 

such that 

4 °. /z' is a head of RT(o(/x);~"-l)). 

5 °. t~ ''-1 is a head of LT(t(p.);~<'-')). 
6 °. I f /z"  is non-trivial, then 
(a) ~"  is on the boundary of (qb0-~))l (cf. Definition 23); 

(13) the factorization (9) is the l.h.s, factorization of tz" in N"-~); 

(~/) for any j, 1 < j  _-< h, if txj is not on the boundary of ~0-1), then/x i = 13(II) H)) 
for some II~i-1) E ~,_,~(~0-1)): 

As in the proof of Theorem 4 we conclude that there is a factorization 

(10) ~" = ~"r"r" 

with the following properties: 
7 °. If ~" (z", ~") is non-trivial, it is a subpath of pr(/x'; alp) (of pr(/x"; ~),  of 

pr(/x"; qb)). Moreover, there are paths x~, K2 such that 

(a) pr(tx";~) = K~I""K2; 

(13) lpr(/z';~)Ka = co'~"; 
(~/) K2rpr(/x"; ~ ) =  ~''~o" (see Fig. 76). 

8 °. If tz" is trivial then ~-" is trivial. 

As in the proof of Theorem 4, we obtain 
9 °. ~-' ~ Yg(@; Y~j=~ 2.13'-%) and ~-" E ~ ( ~ ;  Y.j=~ 2.13~-Jej). 
Using (10), we have: 
10 °. If r" is trivial then ~" = z ' 7 " E  ~(~;Ej=14.13'-Jej)C ~(~;Z~=ll3'+l-te~). 
In what follows, we assume that ~'" is non-trivial; then, by 8 °, /z" is also 

non-trivial. 
Let S be the subset of {/x~,/z~,...,/z~} defined as follows: 

(11) S: = {/~ [/z~ is on the boundary of ~('-~}. 

Using Lemma 17(a) and 6°(13), we obtain that the paths/xj_t and/zi cannot both 
belong to S. We apply Lemma 28 with M,/x, v replaced by N,/x" and ~'". There 

result factorizations 

(12) IS."= 0' 0~0~0~0" 

and 
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(13) 

with the properties described in Lemma 28. 
As in the proof of Theorem 4, one shows that 
11 °. ,~,, 4)3 ~ ~t(~;  Y.J., lY-Je~). 
The  only change is that the reference to Proposition 2(h), (h') is replaced by a 

reference to 6°(~/). 
We have the following possibilities: 
(1) ~ ~e(~,;:~:~ 1Y-'e,); 
(2) 4~ E ~ ' (~ ;  N2'~ 13'-~ej) and O is trivial; 
(3) 4)2E ~(~;NT.~ 13'-Jej) and tO is non-trivial. 
We consider each of these cases separately. 

Case 1. ~bzl~ ~'(q);l~j-~ 13'-~e,). 
In this case 4~2 is non-trivial. Hence,  by Lemma 28(c), 02 is non-trivial, and 

then 

(14) 02 = P,h E S. 

By (11), #h is on the boundary of ~ o - , .  By Lemma 28(c), there are paths xo, K; 
for which pr( /~;  4))= xo4~K~. 

We apply the induction hypothesis with i, ~ co', r, ~o" replaced by i - 1,/zh, Xo, 
4)~, K;. Since 4~2t~(O;E}7.~13i-Jej), it follows that there is a simple path 
rl E Br~ (i - 1), connecting a vertex of 4)~ to a vertex of pr~ (P-h; q0, and having 
the following properties: 

12 °. Let X~ be the (minimal) head of 4), such that t (X~)=o(n) .  Then 
X, ff ~ ( ~ ;  Y'J:~ ½" 13'-~e~) • 

13 °. There  is a faetorization 17 = r h ~  such that 
(a) t(rh) = o('0~) is a vertex of/~h = 0z, rl~ is a path in S(/~n; ~)  and n~ a path in 

(13) if Xo is the head of /~h such that t (xo)=t(~,) ,  then 

KoX, ~,-1LT(o(/~h); ~)-'Xor/~"; 
(~/) if • < ~ then rl~ is trivial; if • < ~ ,  then at least one of the paths ~,, rl~ is 

trivial (see Fig. 103). 
We can now prove (C). 

By (10) and (13), ~ is a subpath of r. By (9), /~h is a subpath of m hence 
pr~ (P,h; ~ )  is a subpath of pr~ (# ;  ~) .  By Lemma l(c), Br~ (i - 1) _C Br~ (i). 
Therefore,  r/ is a simple path belonging to Br~ (i) and connecting a vertex of r 
to a vertex of pr~ ( /~;~) .  Define 

(15) ~', := r'4)IX,. 
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r12 is trivial r h is trivial 

Fig. 103. 

Then, by (10), (13) and 12 °, ~-, is a head of 1- such that t0"l) = o01). By 9 °, 11 ° 

and 12 °, 

i=l  j=l  

Since d~ satisfies (So), ~'1 cannot contain a boundary cycle of • and therefore ~'t is 

the minimal head of ~- such that t( ' t t)= o(11). 
(A(a)) and (A(~/)) follow from 13°(¢t) and 13°(~/), respectively. We verify 

(A(ID)). Denote 

(16) ~o = ~'o'o,xo. 

By (8), (12) and 13 °,/~o is the head of/~ such that t(/~o) = t011). Using (15), (16), 

7°(13), 13°(13), Lemma 28(c), Lemma 15(c) and Lemma 26(a), we conclude as in 
the proof of Theorem 4 that 

o~'~-~ 7 LT(o(/~); ~ ) -1 / , o~  1 

(see Fig. 104). Thus (A(13)) also holds. 

This proves (C) in Case 1. 

Case 2. (~2 E ~ ( ~ ;  X~=~ 13'-~ej) and ~ is trivial. 

In this case we have by (10), (13), 9 ° and 11 °, 

' " " ' "  " " I"" ~ 7"13'-ie~ + 6e, C ~ ~ ;  13~+~-~e~ "J" "~ 'r  ,"r ' r  ,-~-"g q~1~2~03 ~ a ~  (I); _ , 
i - i  
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Thus (C) is true. 

Case 3. ~b2E ~(~;Y-~-~ lY-%) and ~ is non-trivial. 
Since t/, is non-trivial, it follows from Lemma 28(a), (d), (e) that 03 =/z~ ~ S 

and th3 = pr(/~;~). By (11) and 6 °, there is a region l-It'-')E ~-,,-,,(~'-')) such 
that /~ =/3(II°-~)). Then, by Definitions 19, 26, 27 and 32: 

14 °. q~3 = pr(fl(II°-'); qb) = pr(a(Ho-')); qb), 
Denote 

(17) a :=  ct(H°-'9, fl:= fl(II°-')), y:= y(1-l"-')), ~$:= ~5(H¢'-')). 

By Theorem 4, 

i--! / 
(18) p r (a - ' ; I I )~  ~ II; ~ lY-Jej +e, 

where r = rank(~). Then, in view of (So), the path pr(a-';  II) = pr(a; I I)-' does 
not contain a boundary cycle of II. By Lemma 7(d), (f) and Lemma 26(b): 

15 °. There is a p.o.b, cycle of II of the form pr(a;II)-l~ol~o2~o3, where 
(a) the path ~o1(~02, to3), if non-trivial, is a subpath of pr(y-l; II) (of pr(~ ; I1), of 

pr(8; H)); 
03) if y(8) is trivial, then tol(to3) is trivial (see Fig. 105). 

7~ 

-r'; 

f 

Fig. 104. 

TO 

9~ 

/~' 

o~/.j 

Fig. 105. 
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By Lemma 22(a), 15 ° and Theorem 4, 

(19) to1, to3 ~ ~ (II; ~ 13'-'e/) . 
i = 1  

Applying 2 ° to II ~'-~) and/3 =/z~ in place of F °-~ and o-, and using 15°(a), we 
obtain to2E ~(H;Zj~-~ 13'-Je~ +e , )  and therefore 

( '  ) (20) to,to2to3E ~ II; ~ 3.13'-Jej +2e, +es . 
i = 1  

Since pr(a;II)-'to,to2to3 is a p.o.b.c, of l-I, it follows from (20) and (So) that 
pr(a;  II) -~ ~ ~ ( I I ;  N- ,  4"13'-JeJ) • Hence 

('-' ) 
(21) pr(a ; II) 1~ ~ II; ~ 13'-Je~ . 

j = l  

On the other hand, in view of (18) and (19), 

( ' - ' )  
(22) to2 n ;  13'- 'e,  . 

j = l  

We apply Theorem 4, with i, ~ ,  ~ ,  ~, to', ~,, to" replaced by i - 1, II, ~ ,  or-', 
o(pr(a- ' ;  II)), p r (a- ' ;  II), t (pr(a- ' ;  II)). In view of (21), we conclude that there is 
a simple path ~:~ E Br~ ( i -  1), connecting a vertex of pr (a- ' ;  II) to a vertex of 
pr(a- ' ;  ~ )  and having the following properties: 

16 °. ~ is a path in S(a-~; II) and t(~:0 is a vertex on the common boundary of 
• and q~"-'). 

17 °. Let t~(t2, t3) be the (minimal) tail of pr (a- ' ;  II) (of pr (a- ' ;  ~),  of ~- ' )  such 
that o(~,)= o(~,) (o(,2)= t(~:,), o(~3)= t(~:t)). Then 

• i - - I  1 

• i - I I  (13) ~2 ~ ~ ( ~ ,  Z~-, ~" 13'-~ei); 
(~/) t 2 ~ H  ,~LT(o(a) ;~)  (see Fig. 106). 
By (22), to2 is non-trivial and then, by 15°(a), to2 is a subpath of pr(/3 ;I  I). 

Hence there exist paths K', K" such that 

pr(/3; l-I) = K'to2K". 

We now apply the induction hypothesis with i, ~ ,  ~,/~,  to', ~-, to" replaced by 
i - - I , I - I ,~, /3 ,  K',to2, K". In view of (22), we see that there is a simple path 
~2 ~ Br~ (i - 1), connecting a vertex of to~ to a vertex of pr~ (/3; ~ )  and having 
the following properties: 

18 °. ~:2 is a path in S(/3 ;1-I) and t(~2) is a common vertex of/3 and pr~ (/3 ;~) .  
(Here we are using (A(~/)) and the fact that rank(H) = i < s = rank(~).)  
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(;I 

Vf.~ } 

L,]/~ L' 
y I ° t'O 

f]li-I}~ 

Fig. 106. Fig. 107. 

19 °. Let t4 be the (minimal) head of pr(/3; II) such that t(t4)= o(~,). Then 
,4E ~'(II;Y.~2~-13'-'e,) (see Fig. 107). 

Let , / be  the path obtained from ~lltl(Olt4~2 by deleting all its closed subpaths 
(if there are any). (See Fig. 108.) 

We can now prove (C). 
Indeed, by (19), 17°(a) and 19 °, ~toJl~,E ~'(II;~;~.~ 2-13'-iei + e,). Since ~, and 

~2 belong to B r a ( i -  1), it follows from Lemma l(a) and Definition 9 that 
~7'*tol*4~x E Br~ (i) and then, by Lemma 2, ~l E Bra (i) (recall that ~ satisfies 
(SCo)). 

/ 
/7 (i.l~ _ _  

Fig. 108. 

~(i) / 
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By (10) and (13), ~3 is a subpath of ~" and by (8) and (9), /.~ = 0s--/3 is a 
subpath of/~ ; thus pr~ (/3; ~ )  is a subpath of pr.~ (~;  ~). By the construction of 
~ ,  t(~) is a vertex of pr(a;  ~). By 14 °, pr(a;  ~)  = ~3. By the construction of ~2, 
t(~2) is a vertex of pr(/3; ~F). We have o(7) = t(~) and t ( 7 ) =  t(~2). Therefore, ~l 
connects a vertex of ~" to a vertex of pr~ (/.L ;~F). By construction, 7 is a simple 
path. 

Using (10), (13), 14 ° and 17 °, we see that the path ~ defined by 

(23) 1"1 := 7'4h4~2' ~' 

is a head of r such that tO',)= o(~2)= t ( ~ ) =  o(7). By 9 °, 11 °, 17°(I 3) and the 
assumption of Case 3, we have 

1 + 3e,)_C ~(cb; ~1 ~', = , ' , , , 2 t 2 '  E ~ ( * ;  ~ 4~ • 13'-'e, j~ ~ • 13'+'-'e,). 

Since 3( satisfies (So), ~'~ cannot contain a boundary cycle of cb and therefore ~-~ is 
the minimal head of ~" such that t0"0 = o(~). 

We now show that condition (A) is satisfied. 
Take 7/1 := v/, ~2:= t(~). Then, by 18 °, t(7,) = o(~2) = t(7) = t(~2) is a vertex of 

/3, hence of ~. By 16 °, ~ i s  a path in S(a; I-I) and, by 18 °, ~2 is a path in S(fl; II). 
By 15 °, 17 ° and 19 °, tlWlt4 is a boundary path of 1-I. Therefore, ~l-ltlwlt4~2 is 
contained in clos(II°-~)); then 7 is also contained in clos(II°-~)). By Definitions 
20, 27 and 32, clos(II°-~))_Csupp(S(/3;cb))Csupp(S(#;~)) and so 7 = 7~ is a 
path in S(#;  ~). By 18 °, the (trivial) path v12 = t(7) = t(~2) is a vertex of pr(g;  ~),  
hence of pr(/~;~). Then, of course, 72 is a path in S(/~;~). We have verified 
(A(~x)). 

Let ts be the head of/3 = 03 = / ~  such that t(rs) = t(7) = t(n,) -- t(~2) (see Fig. 
107). In view of (8) and (12), the path/ to  defined by 

(24) /zo:=/z'0'0~02~5 

is the head of/~ such that t(/.~o)= t(7~). 
Using 7°(13), Lemma 28(d), 17°(~/), (23), (24), Lemma 15, Lemma 26 and 

reasoning exactly as in the proof of Theorem 4, we obtain 
w'~'~ ~ LT(o(/~); ~)-~/.~ov/~ ~ (see Fig. 109). We have thus verified (A(I3)). (A(~)) is 
also satisfied, as 72 = t(~) is trivial. 

This proves (C) in Case 3. Since Cases 1, 2, 3 exhaust all possibilities, (C) is 
proved in its entirety. 

Similarly, one can prove: 
(C') Either ~'~(~;Y.~.~13~+~-~e~), or there is a simple path 7 ' ~ B r ~ ( i ) ,  
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/-/ri-,I 

1.7" 

I.T 

~0 z 

e" 

o~V~ 

ocp~ 

~ s  

Fig. 109. 

connecting a vertex of I" to a vertex of pra (/z ;* ) ,  having property (A') and such 
that, if ~'2 is the (minimal) tail of ~- satisfying o0"2)= o(~/'), then 

7"2 E ~' (~;  j=~t 1 • 13'÷1-'e~). 

We can now deduce the remaining assertions of Theorem 5 from (C) and (C'). 
As in the proof of Theorem 4, assuming that "r~ ~ ( ~ ;  X}=113~+l-Jej), we see that, 
for some subpath 0 of r, ~" = ~0*2. Next, letting ~o denote the path obtained by 
reducing ~ff~/~/z~ -1 and noting (A(13)) and (A'(13)), we obtain 0 ~,,h~0nl -~ (see 
Fig. 97). Now, by (A(a)) and (A'(a)), the paths *12 and 7; are in S(/~ ;* ) ;  hence 
we conclude that there is a boundary path ~ of W such that ~o~,~12#0~ 1 (see Fig. 
98). Then 

0 - n ,~0n ; - '  - m m g n ; - ' n ;  -~=  nO7 '-~. 
i 

Since rl, ~1' are simple paths belonging to Bra (i), it follows from Definition 9 that 
0 E ~ ,  (4); s) = ~¢a (¢; e,). 
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In view of (5) and Definition 9, we have 

, = , ,0,2 E 3~ (~ ;  ~ 13'+l-Jej + es) . 
i=l 

We have shown that, if ~" is an arbitrary subpath of pr( /x;~) ,  then either 
E ~ ( ~ ;  Y.~=113'÷1-0 or r E .9~ (~; Y~j~ 13'+~-Jej + e,). Hence,  by Definition 9, 

pr(/x ; * )  E ~ ( * ;  _~'~_'j 13'+1-'e, + es) . 

This completes the proof of the theorem. 
We need also the case when rank(W) _-< i. This case is much simpler than the 

case when rank(W) > i. 

THEOREM 6. Under the conditions of  Theorem 5, let us assume  that k < 

rank(W) = s <= i. Then 

pr(/x ; ~ )  E ~ ( * ;  j_~ 13'÷~-Jej) • 

PROOF. We proceed by induction on i -  k. 
If i -  k = 0, the statement of the theorem is vacuous, so we assume that 

i - k > O .  

1 °. Let F be a region of ,A c of rank i such that 1 ~i-~ E .~,_l~(qbti-*)). Let tr be a 
subpath of /z which is a boundary path of F ti-~. Then p r ( t r ; F ) E  
~ ( F ;  Y j=, 13'-~e,). 

Indeed, as a subpath of g,  cr is a n.o.b.p, of q#~). If rank(W) = s _-__ i - 1 then, by 
the induction hypothesis, 

i--1 

Pr(cr; F) E A° (F; j__~ 13'-'e~) C X° (F; ~ 13'-'eJ) " ,=~ 

If s = i then, using Theorem 5, we obtain 

p r ( ~ ; F ) ~ '  F ; ~ 1 3 ' - ~ e j + e ,  = ~  F; 13'-~ej , 

as required. 
Now we have: 
2 °. Under  the conditions of 1 °, ~ #  ~(~H)) .  
Let ~ : =  a (F"-I~),/3:= ¢t ( r " - ' ) ,  31:= T(F"-~), ~:= ~(r(~-~). Reasoning as in 3 ° 

of Theorem 5, we can find a boundary cycle v~v~ of F such that v~ is a subpath of 
pr(/3;F) and v2 is a subpath of pr(&x-~y-~;F). 
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If or =/3 =/3(P'-')), then, by 1 °, v, E ~(r ;E}=,  13'-Sej). 
If d~,-,~(F('-l),~(i-1))>l then, as in 3* of Theorem 5, we obtain v2E 

~ (F ;  Ig~., 4.13'-~ej) and then 

vlv2 E ~ (P; 2 5"13'-'ej), 
j = l  

contradicting (So). If dN,,-,,(IX'-~),q~ °-u) = 1 then, by Lemma 22(a) (b) and 
Theorem 4 we obtain v2 E ~°(F; Y~j-~ 3.13'-Jej + 2e, + e,) and then 

vlv2~ F; 4.13i-~ej +3e~ +e,  , 

also contradicting (So). Thus, ere/3(IX'-u), as required. 
We now apply Proposition 1 to the path/z,  with M, ~ ,  4)' replaced by N"-~), 

• ('-~) and ~(o. There results a factorization/z =/z ' /z"/z" and, if/z" is non-trivial, 
a further factorization Ix" =/z~/z2- t-/zh such that 

3 °. /z' is a head of RT(o(~);~( ' -u) .  
4 °. Ix "-1 is a head of LT(t(/z);~('-~)). 
5 °. I f /z"  is non-trivial then 
(a) tz" is on the boundary of (~(H))~; 
(13) the factorization Ix" = tzltz2" • • tzh is the 1.h.s. factorization of/z" in N('-I); 
(~/) for any ], 1 =< j _-< h, if IZj is not on the boundary of ~"-1), then tzj =/3(II} H)) 

for some II~ H) ~ -S~,-,,(~('-1)). 
Comparing 50(V) with 2 °, we obtain 
6 °. If lz" is non-trivial, it is on the boundary of q~0-~). 
Let r be a subpath of pr(/z;~).  As in the proof of Theorems 4, 5, there is a 

factorization ~- = rq ' " r "  with the following properties: 
7*. ~"(~'",r') is either trivial or a subpath of pr(/z';q~) (of pr(/z "; q)), of 

pr(/z"; (I,)). 
8 °. I f /~"  is trivial then ~r" is trivial. 
As in the proof of Theorems 4, 5, we have: 
9 °. ~", z " E  ~ ( ~ ;  E}=~ 2.13'-Je~). 
If r" is trivial, then ~- = r '~ ' '  ~ ~(q~;E~=~ 4-13'-~e~)_C ~(q~; Y.~=~ 13'÷a-~e~). If ~'" 

is non-trivial then, by 8 °, #" is also non-trivial. Then, by 6 °, ~"  is a p.o.b.p, of 
• "-~) which is also a n.o.b.p, of xIt(~ ). 

If r a n k ( ~ ) = s _ < - i - 1  then, by the induction hypothesis, pr( /x" ;~)U 
~(~;E~.~ 13'-~e~) and then, by 7 °, we have also 

• " ~ ~ ( * ;  ~ 131-'e,) C ~ ( * ;  ~ ,  13'-'e,) • 
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If rank(~) = s = i then, by Theorem 5, 

/ 
~'" E ~ [¢P; 

Then, by 9 ° , 

i --1 

~13'-'es+e~)=~(~;~,lY-'e~).,~, 

~ 13i+l-Jej) . 

We have shown that any subpath of pr(/~; ~)  belongs to ~ ( ~ ;  ZJ11 13'+~-iej). In 
particular, 

/ 
pr(tt; ~)  E ~ [~;  

The theorem is proved. 

~ 131+l-iei) . 

7.2. In this section we consider a somewhat different situation than in 
Theorem 4. Instead of looking at a path on the common boundary of two regions 
in M °~, we consider a boundary path/z  of a region in M °) which belongs to a 
special class of paths which we now define. 

DEFINITION 34. The sets of paths ~'(c). Let i>= 1 and c = Ej~l csej. We say 
that a pa th /z  in M belongs to ~3'(c) if and only if given: 

(a) a factorization /z = ~1/£2/,L3; 
(13) simple paths o-, 7 E Br(i - 1); 
(~) a boundary path v, of a region el, in M, of rank i, such that 
(8) /x2~,_ltr-'v11" (see Fig. 110) 

we have the following: 
(1) v, does not contain a boundary cycle of el,; 

t~ .r 

Fig. 110. 
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(2) if v2 is a boundary path of ¢b such that vlv2 is a boundary cycle of ¢b then 
v2 ~ ~ (~ ;  c). 

THEOREM 7. Let ,¢ /=(M,{ff l , - ' - , f f .} ,<)  be an ordered n-ranked map 

satisfying condition (So) and condition (SC,) for some i,O<_- i < n. Let ~p be a 

region in M, of rank r > i, and dP ~) the corresponding region in M °). Let be be a 

p.o.b.p, of ~o~ such that 

i 

(1) ~ ~ N 

Assume, given a factorization 

t2) 

then either 

pr(be; ~) = ~o'I-¢o", 

(3) • E ~ (4); j_~ 13'+~-~ei) 

or there exist two simple paths ~, 7/' E Br(i) in S(be; ~), each connecting a vertex of 

to a vertex of be, with the following properties (see Fig. 111): 

ttta~ 

r~ '1' 
J 

9 

otpl 

Fig. 111. 

tO o 
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(a) Let ~, be the minimal head of ~" such that t ( z , )=o(~) .  Then 

z, E ~(¢~; IC~, ~. 13'÷'-Je~). 
(a') Let ~ be the minimal tail of • such that o0"=)=o(~').  Then 

i 1 z: ~ ~ ( ~ ;  Y-i=~ 5.13~+~-~ei). 
(b) There is a head ~o of tz, such that t ( / to)=t(~),  for which w'r ,~,  

LT(o(/~ ); I~)--  1 p~ 0 n --l. 

(b') There is a tail I-~ of ix, such that o(l~) = t(~'), for which 

t t T w" - ~/LoRT(t(/z) ,~) .  2 i 

(C) T = '7"10'7"2 for some subpath 0 of ~. Furthermore, for some subpath ~ of l~ or 

~-' ,  connecting tOO) to t(~'), 

0 ~ ~07 '-1. 

COROLLARY. Under the assumptions of Theorem 7, assume in addition that 

t~ E ~" (Y~j~1 cjej ) for some cs >= O, and that, for some boundary path w of ~,  ~w is a 

b.c. of ap. Then either (3) holds or 

,~1 - 2  13'+l-Se,) • 

PROOF. Let us assume that neither (3) nor (4) is true. Then, by (a) and (a'), 

,2orb E ~ @P; j~  cje,). 

By Lemma l(a), (c), 7/-1 and ))'-~ belong to Br(i)_C Br(r - 1). Since i _--< r - 1, we 
have also ~ -,_~ T)-~0~) ' and then, by Definition 34, any path in M~ that contains 
or ~-~ as a subpath, cannot belong to ~'(Y-i>~ cjej). In view of (c), this contradicts 
our assumption. (See Fig. 112.) 

PROOi: OF THEOREM 7. We proceed by induction on L 
If i =0 ,  then ft = pr(/~;~,)= w'~w" (see Fig. 113). Take )):=o0"),  )) ' :=t0").  

Then 

l",=o(z), 0=~', ¢2=t0"), #o=W', /~=w", ¢ = 0  

and then conditions (a), (a'), (b), (b'), (c) are obviously satisfied. 
Assume now that i > 0. 
We begin with the following statement. 
1 °. Let F be a region in M, of rank i, such that 1 ~H) E .~(,-1)(~ (~-u) with k > 1. 

Let or be a boundary path of 1 ~H) which is a subpath of/x. Then or#/3(l~H)). 
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,o [ 

Fig. 112. 

/ 
Fig. 113. 

(O S 

Indeed, as in 3 ° of Theorem 5, we can find a boundary cycle ul z,2 of F such that 
u, is a subpath of pr(/3(P~-');F) and v2E ~°(F;E~=,4"13'-Jei). 

By our assumption,/z E ~ (E~-~ 5.13i-Jej + 4e~), therefore, by Definition 34, ¢r 

also belongs to fg'(Ej;~ 5.1Y-Jej + 4e~). If o" =/3(IX'- '),  then applying the indue- 

tion hypothesis and the corollary of Theorem 7, we obtain that either u~ E 
i-1 i- i  ~ ( F ;  Ej=~ 13 ei) or v2 ti~ ~°(F; E}~ 4.1Y-~ej). The second statement is impossible 

and the first statement implies 

( '  ) v~v2E ~ F; ~'~ 5.13~-~ej +4e~ 
j=l 

contradicting (S.). Therefore, o-¢ ¢i(F°-'),  as required. 
The rest of the proof is completely similar to the proof of Theorem 5. 
We prove the following statement: 

((2) Either ~- E ~'(q~; Y~}=~ lY÷~-Jej) or there exists a simple path 7 /E Br(0  in 

S(~ ; ~ )  connecting a vertex of r to a vertex of ~ and having properties (a), (b). 
Applying Proposition 1 with M, ~,  ~ '  replaced by M °-°, ~o-, and q~o~, we 

obtain a factorization 

(5) t~ =/z 'p."/z" 

and, if/.~" is non-trivial, a further factorization 

(6) #"=/~1#2" • • t~, 

such that 

2 °. p / i s  a head of RT(o( /~) ;~°- ' ) .  
3 o. #,,,-1 is a head of LT(t(#);~°-~J). 
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4 °. I f /z"  is non-trivial then 
(or) ix" is on the boundary of (O,-l))t; 
([3) the factorization (6) is the 1.h.s. factorization of/~" in M('-1); 
(~/) for any j, 1 <-j _-< h, if/~j is not on the boundary of ~0-]), then p~ = ~(II~ H)) 

for some II~ '-l) E .~(,-,(~(~-1)). 
As in the proof of Theorems 4, 5 we conclude that there is a factorization 

(7) ~" = 7'¢"¢" 

with the following properties: 
5 °. If ¢'(¢", ~ ' )  is non-trivial, it is a subpath of pr0.d; ~)  (of pr(/~";q)), of 

pr(/t"; ~)). Moreover, there are paths K,, K2 such that 
(et) pr(/~"; ~)  = x l ' ruK2;  
(13) Ip r ( /~ ' ;  (1))K, = ~0'¢' ;  
(~/) K2rpr(/-d";*)= ¢"oY' (see Fig. 76). 
6 °. If I.d' is trivial then ¢" is trivial. 
As in the proof of Theorems 4, 5 we obtain 
7 °. ¢ ' E  ~(q);X~.~2.13~-Jej) and ¢ " E  ~(q);XJ=~2.13'-~ej). 

Using (7), we have 
8 °. If ¢" is trivial then ¢ = ¢'¢" E ~ ( ~ ;  Y.~.~ 4.13'-Jej) _C ~(q); X~=~ 13~+~-~ei). 
In what follows, we assume that ¢" is non-trivial; then, by 6 °, It" is also 

non-trivial. 
Let S be the subset of {/zt, tz2,-",/z~} defined as follows: 

(8) S: = {/~ [/h is on the boundary of ¢(H)}. 

Using Lemma 17(a) and 4°([3), we obtain that the paths/z~_l, W cannot both 
belong to S. We apply Lemma 28 with /g v replaced by /~", ¢". There result 
factorizations 

(9) ~" = 0'01(72030" 

and 

(10) ¢" = ckl~k2~k3~b 

with the properties described in Lemma 28. 
As in the proof of Theorems 4, 5 one shows that 

9 °. ~kt, (k3E R'(*; XJ., lY-'ej). 
Here we use the reference to 4°(-/). 

W e  have the following possibilities: 
(1) (h ~ ~ ( * ;  X~_~ lY-le,); 
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(2) (ks E ~((I); Y~j?_-~ 13'-iej) and ~b is trivial; 
(3) ~bz E ~((I); Y~-] 13'-%) and ~b is non-trivial. 
We consider each of these cases separately. 

Case 1. tkzt/~ ~((I);Y.j2-~ 13'-Sej). 
In this case (ks is non-trivial. Hence, by Lemma 28(c), 05 is non-trivial, and 

then 

(11) 02 =/x~ E S. 

By (8), ~h is on the boundary of (I) ('-u. By Lemma 28(c), there are paths Ko, K~ 
for which pr(/~h; (I)) = Ko(k2K~ (see Fig. 114). 

We apply the induction hypothesis with i, lz,~o',¢,to" replaced by i - 1 ,  
K t i--1 i - j  Ph, K0, tk2, o. Since ~k2 ll-z' ~ (~ ;2 i=~ 13 ej), it follows that there is a simple path 

7/E Br(i - 1) in S(t~; (I)), connecting a vertex of 4)2 to a vertex o f / ~  and having 
the following properties: 

~/t'/ 

~ , 

"Ke 

F i g .  1 1 4 .  Fig. 115. 

40 
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10 °. Let g~ be the minimal head of q~2 such that t (x i )=  0(7/). Then 

1.13~_Sej) 

I lL  For some head Xo of ~ such that t(xo)= t(~), 

KoX1 ,_~ LT(o(/xh); ~)-'Xor/-1 (see Fig. 115). 

We now prove (C). 
By (7) and (10), ~b2 is a subpath of r. By (5) and (6),/zh is a subpath of/z.  By 

Lemma l(c), Br ( i -1 )_CBr( i ) .  Therefore, 77 is a simple path in S(/z;qb) 
belonging to Br(i) and connecting a vertex of r to a vertex of /z .  Define 

(12) ~'1 := l"~blX1. 

Then by (7), (10) and 10 °, 1"1 is a head of z such that t(~'l) = o(~). By 7 °, 9 ° and 
10 ° , 

1 + 3e,)_C ~(~; .~1 ,,=I",,X1E~(*;~3~'lY-'e, ,~  ~ • lY÷'-Se,). 

Since JR satisfies (So), ~'1 cannot contain a boundary cycle of • and therefore rl is 
the minimal head of r such that t ( r0  = o(~). We have verified (a). Take 

(13) ~o: = Iz'O'O1Xo. 
By (5), (9) and 11 °, tzo is a head of/z such that t(/~o) = o01). We have the situation 
in Fig. 104. 

Using 5°(13), Lemma 15 and Lemma 26, we obtain 

(14) a~'r' - LT(o(/z); ~)-l/z 'LT(o(/z");  qb)Kl. 

Lemma 28(c) gives 

(15) r,~b, "7 LT(o(/z"); ~)-10'OlLT(o(/zh); ~)ro.  

Using (12), (13), (14), (15) and 11 °, we obtain 

~o'1"1 - LT(o(Iz); ~)-1/Zo~/-1 

We have verified (b) too. This completes the proof of ((2) in Case 1. 

• i -1  i - j  Case 2. ~ E ~(~,  ~i~113 ei) and ~ is trivial. 



128 E. RIPS Isr. J. Math. 

In this case, by (7) and (10), 1- = l"'4~,~b253z". Then, by 7 ° and 9 °, 

~" , ~'' . ~-1 + 6e,)  C 

and therefore (C) is true. 

Case 3. ~b2E ~'(~;~2-~ 13t-Jej) and ~ is non-trivial. 
Since ~ is non-trivial, it follows from Lemma 28 (a), (d), (c) that 03 =/xj~ ~ S 

and ~3  = pr(Iz~; ~). By (8) and 4°(~/), there is a region I] "-') E LeA,,-,,(~°-,)) such 
that 

( 1 6 )  03 = ]~/3 = / 3 ( 1 ] ( i - I ) )  • 

Denote 

(17) a:=a(II°-l)) ,  /3:=/3(II"-')), y:=V(II°-~)), 8:=8(l-lU-u). 

By Definitions 19, 26, 27 and 32, 
12 °. 63 = pr(/3; ~) = pr(a; ~). 

By Theorem 4, 
t--1 

where r = rank(~). Then, in view of (So), the path pr(a- ' ;  11)= pr(a;II)- '  does 
not contain a boundary cycle of II. By Lemma 7(d), (I) and Lemma 26: 

13 °. There is a p.o.b.c, of II of the form pr(a;II)-'to~to2to3, where 
(~) the path to,(to2, to3), if non-trivial, is a subpath of pr(~-'; 11) (of pr(/3; II), of 

pr(8; H)); 
(13) if ~/(8) is trivial, then to~(to3) is trivial (see Fig. 116). 
Applying the induction hypothesis and the Corollary, with i, r, ~, /.t, z, to, 

replaced by i -  1, i, H, /3 =/zh, to2, to3pr(t~-';11)tol, we see that either to2E 
~(II ;  ~?.~ 13'-Je~) or 

(19) to3 pr(ot-~; II)to, ti_" ~ (II; ~ 4.13'-'e,). 

In view of (So), if to2 E ~ ( I I ;~ -~  13'-~ei), then (19) also holds. Thus, (19) holds in 
each case. By Lemma 22(a), 13 ° and Theorem 4, 

i 

Comparing (19) and (20), we obtain pr(a- ' ; I I ) f f  ~(II;Y~}_,2.13'-~e~). Then, of 
course, 
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/ 

LT ~ 

,_./. R r ~  
T 

~= 0j 

Fig. 116. 

,-I / 
(21) p r (a -~ ;H)f f  ~ II; ~ lY-Je~ . i=1 
On the other hand, by (18) and (20), 

) ~o3pr(a-l;II)~o, E ~ 11; ~ 3.13'-Jej +2e,  +e ,  , j=l 
and then, in view of (So), oJ: ff • ' • '-J • ~ ( I I ,  Yj~14 13 ei), hence 

) (22) ~z ~ ~ H; l Y - J e i  . 

We apply Theorem 4, with i, ~ ,  ~, /~,  to', z', o£' replaced by i - 1, II, ~ ,  a -1, 
o(pr(a-1;II)) ,  pr(a-1;II) ,  t (pr(a- l ;H))  (see Fig. 106). In view of (21), we 
conclude that there is a simple path ¢~ E B r ( i -  1), connecting a vertex of 
pr(a-~;H) to a vertex of pr(a-1; ~ )  and having the following properties: 

13 °. ¢~ is a path in S(a-~; II) and t (~)  is a vertex on the common  boundary of 
and ~t--).  
14 °. Let ~l(~z, Ls) be the (minimal) tail of pr(a-1; H) (of pr(a-1; ~),  of a -1) such 

that o(,t) = o(~1) (o(t2) = t(~l), o(t3) = t(~q)). "Ihen 
~{rI .  ~,-1 _i. 13,-Je~); (a)~l~ ~ , j=l~ 

• i-1 t (13) ~2 E ~ ( H ,  Ej=I 2" lY-~ej); 

(',/) ~z-,-I ,.sLT(o(a); ~).  
By (22), ~oz is non-trivial and then, by 13°(a), a~z is a subpath o~ pr(t~;n). 

Hence there exist paths ,,', x" such that pr(~; n ) =  , , '~ , ," .  
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We now apply the induction hypothesis with i, qb, ~, o/ ,  ~-, oJ" replaced by 
i - 1 ,  II, [3, K', ~o2, K" (see Fig. 117). Here we use the fact that, by (5) and (9), 
/3 = / ~  is a subpath of tz ; hence, by (1), 

[3 E f ]  ~3 h 12~ 5"13h-ieJ +4eh ] i 

h ~ l  \ j = l  

In view of (22), there is a simple path ~2 E Br(i - 1 )  in S([3;II) connecting a 
vertex of ¢o2 to a vertex of [3 and such that, if ~4 is the (minimal) head of oJ2 for 
which o(~2)= o(~4) then 

(23) L4~ ~ tII;  ~ ~ • lY-'e, ) . 

Let ~ be the path obtained from ~'rloJ~r4~2 by deleting all its closed subpaths 
(if there are any). 

We can now prove (C). 
Indeed, by (20), (23) and 14°(o0, 

i--I ,l¢Ol,4E,(II;~2.13i-Jej+ei). 
Since ~:1 and ~r2 belong to Br(i - 1), it follows from Lemma l(a) and Definition 9 
that ~Tlr~oJ~4~2 E Br(i) and then, since d~ satisfies (SC0), by Lemma 2, we obtain 

EBr( i ) .  By (7) and (10), ~3 is a subpath of ~" and by (5) and (6),/.~ = [3 is a 
subpath of /z. By the construction of g~,t(~) is a vertex of p r ( a ; ~ ) .  By 12 °, 
p r ( a ; ~ ) =  ~b3. By the construction of ~2, t(~2) is a vertex of /3. We have 
o ( ~ ) = t ( g 0 .  Therefore,  7/ connects a vertex of ~" to a vertex of IX. By 
construction, rl is a simple path. Clearly, r I is in S(t~;~).  

C,,.,J 

8 

flli'tl~fl 1 

LT'~,.. 
Y 

Fig. 117. 
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Using (7), (10), 12 ° and 14 °, we see that the path ~'~ defined by 

(24) ~'1 := ~"~blth2~2 -1 

is a head of z such that t(~',)= o(t2)= t(~q)= o(n). By 7 °, 9 °, 14°(13) and the 
assumption of Case 3, we have 

~-~=~-'4~4~2G1~N q);~4~-lY-Je~+3e~ C_~ q~; .13'÷~-~e~ 

Since M satisfies (So), ~'~ cannot contain a boundary cycle of • and therefore I-~ is 
the minimal head of ~- such that t(z~)= o(7/). We have verified (a). 

Let ts be the head of/3 such that t(~s) = t(~:2) = t('0) (see Fig. 117). In view of 
(5) and (9), the path /x0 defined by 

(25) /~o: =/z'0'0102~s 

is a head of /z  such that t(/zo)= tts)--t(~q) (see Fig. 109). 
Using 5°(13), Lemma 28(d), 14°(V), (24), (25) and the fact that LT(o(/3); ~ ) =  

LT(o(/zj~); ~) = ~/LT(o(ot); ~)  and reasoning exactly as in the proof of Theorem 

4, we obtain 

~o'~', T LT(°(/z);~)-~/x°rl-1 

So we have verified (b) too. This completes the proof of (C) in Case. 3. Since 
Cases 1, 2, 3 exhaust all possibilities, (C) is proved in its entirety. 

In similar fashion, one can prove: 
(C') Either ~" E ~ ( ~ ;  X~=113'÷l-ie/) or there exists a simple path ~ ' E  Br(i) in 

S(~ ; ~)  connecting a vertex of r to a vertex of t~ and having properties (a'), (b'). 
We now deduce assertion (c) of Theorem 7 from (C) and (C'). As in the proof 

of Theorem 4, assuming that r ~  ~(~;X~=~ 13*+l-Jej), we see that, for some 
subpath 0 of z, I- = ~'1~2. Then, by (2), 

(26) pr(p. ;(I)) = to'rl/h-2to". 

By Lemma 15(0 and Lemma 26(a), 

(27) pr(/~ ;~)  "z" LT(o(/~); O)-t/.r RT(t(/z); ~). 

Using (b), (b'), (26) and (27), we obtain 

0 T ' I ~  '-~, 
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where ¢ is the path obtained by reducing the path/~ o~p./.t 6 -~. Since/~0 is a head of 

# and /,~ is a tail of /z ,  ~ is a subpath of p. or/ . t  -t. 

This completes the proof of Theorem 7. 

§8. Elimination of condition (SC. 1) 

THEOREM 8. Let d~ = ( M , { f f l , . . . , ~ r , } , < )  be an ordered n-ranked map 

satisfying condition (So). 
If  M is simply-connected, then Jlt satisfies condition (SCn-I) (hence also 

condition (SC,) for any i, 0 <= i < n). 

PROOF. We proceed by induction on the number of regions of M. Assume, 

then, that the statement is true for any map with less regions. 

We shall prove by induction on i that d~ satisfies (SCi), 0 -  -< i < n. First, we 

show that . a  satisfies (SCo). 

Let cb be a region in M. If clos(~) is not simply-connected, there is a closed 

boundary path to of • such that 

(or) to does not contain a boundary cycle of ~ ;  

(13) to is a boundary cycle of some regular simply-connected submap N of M 

such that int(N) is connected (see Fig. I18). 

Let °R,: = ~ I-I Reg(N)  and let m be the maximal integer such that OR,, # 0 .  

Then )¢" = (N,{OR1,''-, ORm}, < ) is an ordered m-ranked map. Since d~ satisfies 

condition (So), the same is true of N. Since • ~ Reg(N),  N has less regions than 

M. Then, by the induction hypothesis, N satisfies (SCm-I). Hence, there is 

defined the sequence 

X ~°~ = N, N~', .. ., N "~-'. 

Consider dV tm-u. By Corollary 2 to Theorem 4, ~tm-u satisfies D(8). But  

.N"- ' )  = ( N " - ' ,  {ORt,.,--u}, < ) has only regions of rank 1 (recall that for ~ ° E  OR<,') 

Fig. 118. Fig. 119. 
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one has rank(~  °) = r -  i in N°)). Therefore each inner region of N tin-l) has at 

least 9 neighbouring regions (see Definition 13). 

According to theorem V.4.3 of [1, p. 248], there exist a region xI~7 -u in N tm-u 
and a boundary cycle on" of ko~ff-~) such that tr is a subpath of to and 

~" U xltt~-~(3e~) in )¢.tm-~) (see Definition 30). (See Fig. 119.) By Corollary 1 to 

Theorem 4 and 4 ° of Theorem 4, prx (~'; ~ )  E ~ ( ~ ;  E?=~ 3.13m-Jei). The path tr is 

on the common boundary of xI~ff -1~ and ~ .  
If rank(~) = r => m, then applying Theorem 5 with i, k, ~ ,  xt,, r, s,/~, r replaced 

by m - 1, 0, xI t, ~ ,  m, r, tr -~, prx (o "-~; ~) ,  we obtain 

( "  ) pr~ (~; ",I~) E ~ ~ ;  ~ 13"-Jej + e, . 

If rank(~) -- r < m then, by Theorem 6, pr(~;  ~ ) E  ~ ( ~ ;  2g~'~ 113m-Jej). Using 

Lemma 7(0 and Lemma 26(b), we obtain that in both cases there is a boundary 

cycle 0 of • such that 

(--' ) 
0 E ~ ~ ;  ~ 4"13m-Je~ + 3era + e, . 

This is impossible in view of (So). Therefore clos(q~) is simply-connected for any 

region • of M, and so ~ satisfies (SC~). 

Now let n > i > 1, and assume that ~ satisfies (SC,-1). We show that (SC,) is 
also satisfied. 

Indeed, if this is not the case then, by 5.1, the ordered 2-ranked map 

.~o-~) = (MO-~, {ff~,-,), ~,,+l°r°-') U ' - .  O ~.q"-mj, < ) 

does not satisfy condition (SC). Then, by 3.5, there exist a region • in M, of rank 
r > i, an integer h _= 0 and a regular submap L of M ~-~, such that 

1 °. C~,,- ,(~ °-1)) C L C C.~-~,~-,(~"-~)). 

2 °. L is not simply-connected. 

Without loss of generality, we choose h as small as possible and, for this h, 
choose L with the smallest possible number of regions such that 1 ° and 2 ° remain 
true. By Lemma 11, 

3". int(L) is connected. 

4 °. L is distinct from C~o-,(~°-~). 

Indeed, if h =0 ,  then supp(~,,-,~(qb°-l~))=clos(~'-~). Since dg satisfies 

(SCH), clos(~ °-~) is simply-connected; therefore, in view of 2 °, 

clos(~ °-°) ~ supp (L). 

We know that L and C.~,,-~(~ ~'-~)) are submaps of M~-~); hence 
t_~ C~,,,-,(~,"-"). 
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Let h >0 .  Then L = C~,,-,,(O ('-~)) implies 

C~-S,~-,,(O ''-')) C L C C~,,-,,(¢"-") 

contradicting the minimality of h. Necessarily, therefore, in this case also 

L ~  C~,,-,,(~°-1)), as required. 

Comparing 1 ° and 4 °, we obtain 
~1/~i--1) t--" Qt~ h + l  /AK(i--I)~ 5 ° . There is a region ~ i n  M, of rank i, such that ~ ~ - ~ " - ' ) t ' * "  )N 

Reg(L). 

Let L~ be the regular submap of L containing all the regions of L except q/H).  

In view of 1 ° and 5 ° , 

6 °. C~,,-,,(O"-") C_ L, C C~-,+,'-,,l(~"-"). 

The map LI contains less regions than L. Therefore, thanks to the minimality 

property of the number of regions of L, we have: 

7 °. LI is simply-connected. 

By Lemma 11, we obtain: 

8 ~. int(L 0 is connected. 

Since .~/ satisfies (SCi-1), we have: 

9 °. clos(kO~'-~)) is simply-connected. 

Since at~-° is a region in M "-'), we have: 

10 °. at~H) is connected. 
Furthermore, at~H) ~ ~-,+,[,)l(q)°-n), while C~,,-,,(~ ( '- ')  C_ L~; therefore by the 

Corollary to Lemma 10: 
11 °. xI ~'-~) and L, have at least one common boundary edge. 
It is also true that: 
12 °. int(L0 rl xI ~'-~ = O. 

In view of 7 °, 8 °, 9 °, 10 °, 11 °, 12 °, there exist paths to~, to2, to3, to4 such that 
13 °. to,to2 is a p.o.b.c, of L~. 
14 °. oJ3to, is a p.o.b.c, of xW-~). 

15 °. to, to3 is a p.o.b.c, of the simply-connected submap Lo of M °-t) obtained 

from L by filling in all its holes (i.e. bounded connected components of the 

complement to supp(L)) (see Fig. 120). 
We distinguish between two cases: 

(1) Reg(Lo) _C {0 °- '}  U ~i-1). 

(2) Reg(Lo) g~ {O ~'-')} U ~'-~). 
Let us consider each case separately. 

Case 1. Reg(Lo) _C {~o-n} U ff~H). 

Let P be a submap of M °-1) that fills in some of the holes of L (see Fig. 120). 
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In other words, int(P) is a bounded connected component  of compl(L).  

By the construction of P:  

16 °. P is a regular simply-connected map and int(P) is connected. 

Next, there are two paths vl, v2 such that 

17 °. vl is a subpath of to2, v: is a subpath of to~ and v~ v2 is a boundary cycle of 

P (see Fig. 121). 

Since qb °-1~ is a region of L~, it is not a region of P ;  hence, by the assumption of 

Case 1, Reg(P)  C 3-~'-1~. 
By Corollary 2 to Theorem 4, ~t "-°  satisfies condition D(8). This means that 

each inner region F °-~ E ff~i-l~ of M °-~ all of whose neighbouring regions 

belong to 3-] '-~, has at least 9 neighbouring regions. In particular, each inner 

region of P has at least 9 neighbouring regions. Then, by theorem V.4.3 of [1, p. 

248], we obtain: 

18 °. There exist a region F °-°  in P and a boundary cycle trr of F °-°  such that 

or is a subpath of vlv2 and r ~ F<~-l)(3el) in ~t ~-~) (see Fig. 122). 

Fig. 120. Fig. 121. 

L~ 

• ° 
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We can write tr = 0.10.2, where 0., (0.2), if non-trivial, is a subpath of v, (of v2). 

If 0"2 is non-trivial, it is on the common boundary of F" ~)Eff~ ~-~) and 

q~'-" E ff~H). Hence 

(1) 0"2 E I~i-l)(el) in i/"-1). 

Now consider o"1. Let 

(2) 0.1 = A1Xz" • • h.p 

be the l.h.s factorization of o"1 in M °-1) and let 

(3) A1, A2,"  ", A~ 

be the corresponding sequence of regions. Denote  

(4) l,:=d~(,-,(A,,~('-l)), 1 <j <--_p. 
f , h .+ l  ~ , .~.(i-1),,  Since L1 is to the left of 0.1 and, by 6 °, L1 C_ ~ ( . -  )(,v ), it follows that 

(5) l,<-_h+l, l<=j<-p. 

By Lemma 8(a), F ° - ° ~  5e~,-~)(I-I ° - ' )  for some region I F  -I). By Lemma 11, 

C~(,-,1(I-I (j-l)) is connected. Therefore, necessarily l-l('-l)=q) "-1). Thus, 

Fo-~)E LP~I,-,I((P('-'). But 1 ~-1) is not a region in LI and so, in view of 6 °, 

d~, ,- , (~ ~-1), (I)(i-~)) > h. On the other hand, for any ./, 

d~,- , , (~ '-1), ~('-t)) <- duo-,,(A~; (p(,-l)) + 1 = Is + 1. 

Comparing these two inequalities, we obtain 

(6) l,>=h, l<j<-_p. 

19 °. There is no j, 1 < j < p, such that lj-~ _-__ l s and ls÷l <- lj. 

Indeed, suppose that there exists/ ,  1 < j < p, such that 1i-1 < lj and li÷l =< li. 

Then, as in Lemma 17(d), hj =/3(A~) and therefore/3 (A~) E Aj(el) in i / ° - ' ,  since 

Aj =/3(A~) is on the common boundary of Aj and F('-I)E ff~-l). 

By Lemma 22(a), y(Aj)EA~(el)  and 8(A~)~A~(el) in ~/o-o. If h = 0  then 

a(Ai)  U A~(e:) in .2/0-"; and if h > 0  then, by Lemma 22(c), or(As)C A~(2e0 in 
.~1i-1). 

Let ~':= a(A~)-ty(A~)-I/3(A~)~(As). By Lemma 6, ,r is a boundary cycle of A~. 

We obtain that if h = 0, then ,r ~ Ai (3el + e2) in ~/('-'), contradicting D(6; 1); 
and if h > 0, then ~r ~ A~ (5ei) in .2/°-°, contradicting D(8). This contradiction 

shows that there is no j, 1 < j < iv, such that 1~-1 --<- l~ and 1~+1 -< Is, as required. 

By (5) and (6), /~ = h or h + 1  for j = 1 ,2 , - . . , p .  Therefore, as we have 
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mentioned in the proof of Lemma 25, if p > 4 then there is always a j, 1 < j < p, 

such that /j-1--<// and /j÷l--</i- Hence, in view of 19 °, p _-<4. 

If h >0 ,  then Aj E ff~i-, for any j, and then or1 E F°-'(pe~)C_ I~-~)(4et) in 
d / ° - ' .  Then, by (1) and 18 °, the boundary cycle o'lcr2r of I ~i-" belongs to 

I*- ' (8e l )  in d / " - ' ,  in contradiction to D(8). 
If h =0 ,  then necessarily lj = 0  or 1 for j = 1 ,2 , . . . , p ,  and lj and lj-~ cannot 

both vanish. Hence, in view of 19 °, the only possible sequences (l~, • •., lp) are the 

following: 

(0), (1), (0, 1), (1, 0), (1, 1), (1, O, 1). 

In each of these cases, trlEF"-~)(2e~+e2) in ~(i-~), and then tr~tr2~'E 

1~-~)(6el + e2) in it°-~); this contradicts D(6; 1). We have thus shown that Case 1 
is impossible. 

Case 2. Reg(L0) l~ {~"-~)} U ~r~,-,). 

Let L2 be the regular submap of Lo containing all the regions of L0 except 

q ~ - ' .  It follows from 13 °, 14 ° and 15 ° that 

20 °. tOltO2 t is a p.o.b.c, of L2 (see Fig. 120). 

In view of 7 °, 8 °, 9 °, 10 °, to1 and to4 are simple paths which have no common 
vertices except for their ends: o(to~)= o(~4)#  t(to~)= t(to4). Therefore: 

21 °. Lz is simply-connected and int(L2) is connected. 

Let N denote the submap of M such that supp (N) = supp (Lz). Since L2 is a 
regular submap of M °-l), we have: 

22 °. N is a regular simply-connected (i - 1)-submap of M such that int(N) is 
connected. 

Denote ~ := ~ N Reg(N), and let q be the maximal integer such that o//.q # O. 
Then 2¢" = (N, {0//~, • •., o//q }, < ) is an ordered q-ranked map satisfying (So), since 

d~ satisfies (So). Since N contains the region ~ of rank r > i, we have q => r > i. 

Then map N has less regions than M, since W ~ Reg(N) and, by 22 °, N is 

simply-connected. Therefore, by the induction hypothesis, N satisfies (SCq_~). 
By Lemma 27, I ~  -" = I ~  -~) for any region F in N of rank => i, and therefore N °-"  
is a submap of M ° - ' .  Since supp(N" - ' )=supp(N)=supp(L2)  and L~ is a 

submap of M ~H~, we obtain: 

23 °. N °-" = L2. 

We now claim that 

24 °. L~ C C~r,,-,,(~°-')). 

Indeed, by 13 °, 14 °, 15 ° and 20 °, L C Lo. The map L1 (L2) is obtained from L 

(from Lo) by deleting ~ ' - "  and some of its boundary edges and vertices; hence 

L1 C L:. 
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By 6 ° , 

C~,,-,,(~ °-'~) C L, C L2 = N °-'~. 

Therefore, by Lemma 19, 

h + l  • C~,,- , , I (~ ° ")  n ~,r~,-,~,- ,..h÷, ... .o-,~. , .=_._..,,-,,~.. )c_ C~, , - , , (~  ~'-'~) 

and then, by 6 °, 

L, C C~'~,t,,l(~ °-°) O N t'-'~ C Cx,,-,(O°-°), 

as required. 

25 °. C~,-,~(~ °-1~) # N °-'~. 

Indeed, by the assumption of Case 2, Reg(Lo)~{~°-~}U~Y~ ' - ' .  But 

Reg(Lo) = Reg(L2) U { .~'-~} and tI ~'-'~ E ~r~,-o, hence Reg(N °-'~) = 

Reg(L2) g {~o-~} U J'~'-~ while 

Reg(C~,-,(~°-~))) = L¢~,-,,(~ °-~)) C {~t,-~)} U ff~i-,. 

Since L~ C_ C~,-,,(O °-~)) C L2 = N °-'), it follows from 13 °, 14 °, 15 ° and 20 ° that 

there is a path oJ5 such that 
26 °. o~o5 is a p.o.b.c, of C~,_,,(qbo-')) (we recall that, by the induction 

hypothesis, 2¢" satisfies (SC,) and therefore C~,-,)(~ °-~)) is simply-connected). 

Since C~,-,,(~ °-')) # N °-~), there is a submap Q of N °-"  which fills in one of 
the holes in supp (C~,-,,(~I,°-~))) t3 clos(q ~'-~)) (see Fig. 123). Let H be the regular 

submap of N such that supp (H) = supp (Q). By the construction of H, we have: 
27 °. H is a regular simply-connected map and int(H) is connected. 

Since -,-xa'°~ = int(C~.,,-,,(d~°-l~)) and int(H) is one of the connected components 

of i n t ( N ) \ c l o s ( ~ ) ,  we obtain: 
28 °. H is an i-submap of ~.  
On the other hand, since s u p p ( H ) =  supp(Q) and Q is a submap of N °-'~, 

hence also of M t'-~, we have: 

29 °. H is an ( i -  1)-submap of d~. 

Since 2¢" satisfies (SC~_~), we have 

30 °. c l o s ( ~  ~) is simply-connected. 

Hence there is a boundary cycle ~:~z of H such that 

31 °. sr~ is a subpath of to~ and ~ is a subpath of ~o~ (see Fig. 124). 
Let o/~:= ~ 17 Reg(H) and let s be the maximal integer such that *W', ~ ~ .  

Then ~ = (H, {°W'~, • •., o/¢. }, < ) is an ordered s-ranked map satisfying (So). Since 
• ~ Reg(H),  H has less regions than M and so, by 27 ° and the induction 
hypothesis, ~ satisfies (SC,-0. By 28 °, s => i. 
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~tli-'tl 

Fig. 123. Fig. 124. 

Consider the map ~,-1).  By Corollary 2 to Theorem 4, 2 (8-1) satisfies D(8). 
All the regions of ~<,-1) are of rank 1, therefore each inner region of H ~'-1) has at 
least 9 neighbouring regions. By theorem V.4.3 of [1, p. 248], there exist a region 
II~ -1) in H ~'-1) and a boundary cycle e'q of H~-" such that 

32 °. e is a subpath of ~,~2 and rl E II~-l)(3el) (see Fig. 125). 
We can write e = ele2 where el(e2), if non-trivial, is a subpath of ~ (of ~2). 
By Corollary 1 to Theorem 4, and 4 ° of Theorem 4, 

(7) pr~ (rl ; I/) ~ ~ (l-I; j~  3.13"-Jej). 

We now apply Theorem 6, with ~/, N, k, i, ~ ,  ~ ,  t~ replaced by ~ ,  ~,  i - 1 ,  
s - 1, I I , ~ ,  e~ -~. This gives 

) (8) p r ~ ( e 2 ; I I ) E ~  ; ~ 13"-Sej . 

Fig. 125. 
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If r = rank(D) > s - 1, we apply Theorem 5, with ~ N, k, i, ~ ,  ~ , / z  replaced by 

~r, ~ ,  /, s - 1,11, ~ ,  e ~-~. The result is 

) (9) p r ~ e ( e , ; I I ) E ~  11; 13~-Jej +e ,  . 

If r = rank(D) _-< s - 1, we apply Theorem 6, with ~ .IV', k, i, ~, ~,  I~ replaced 

by N, ~ ,  i, s -  1, II, q~, e i ~. Then 

( - ' )  
(10) p r ~ ( e , ; I I ) E  ~ II; ~ 13"-Jej . 

j=l 

Since e~e2rl is a boundary cycle of 11~e -~ it follows, by Lemma 7(d), (f) and 

Lemma 26(b), that there is a boundary cycle X of II with the property: 

if r = rank(D)>  s - 1 then X ~ ~ ( I I ;  Y~-15"13~-~e~ +3e~ + e,), and 

if r = rank(q~)N s - 1 then X ~ ~(11; Y~]:I 5"13~-~e~ + 3e~). 

In either case we have a contradiction to (So), and so Case 2 is also impossible. 

This contradiction, in turn, shows that .~ satisfies (SC~). The induction argument 

is completed and therefore ~ satisfies (SC~-0. 

The theorem is proved. 

09. Proof of Theorem 3 

We have a connected simply-connected ranked map (M, rank) satisfying 

condition (So) and having a reduced boundary cycle a. By the remark in the end 

of §2, we may assume without loss of generality that M is regular and int(M) is 

connected. 

Let ~ be the set of regions of M of rank i. Let n be the maximal integer such 
that ~ ,  ~ O. We have Reg(M)  = fit U ~2 U . . -  U ~r, where ff~ CI ~ = O for 

i~ j .  We introduce a linear order " < "  on the set ~r2 U . . .  U ~r, subject to the 

condition that if r ank(D)<  rank(~)  for two regions ~ ,  xt,, then also • < ~ .  By 

Definition 12, we obtain an ordered n-ranked map 

= (M, {ff~, if2, • •., ~-, }, < ). 

(i) By Theorem 8, ~ satisfies (SC,_I). Consider the map 

By Corollary 2 to Theorem 4, ~/~n-~) satisfies condition D(8). Since all the regions 

of M ~n-~) are of rank 1, this means that each inner region of M ~n-~) has at least 9 

neighbouring regions in M <'-lJ. Then, applying theorem V.4.3 of [1, p. 248], we 
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conclude that there exist a region ~t"-i) in M t"-~) and a boundary cycle d~t~2 of 
~t.-l) such that 

1 °. d~l is a subpath of a. 
2 °. ~2 ~ ~t"-t)(3e~) in i/t--~) (see Fig. 126). 

If d ~ ,  ,h~to  w-,~=15"13~-~e~+4e~) then, for some i, l < ~ = < n - 1 ,  
thl I~ ~3'(EJT.~ 5.13'-~e~ + 4e,). By Definition 34, this means that there exist 

(a) a factorization d~l = d~I/~d~'~; 
simple paths tr, ~" ~ Br(i - 1); 

a boundary path y of some region q~ in M, of rank i, such that 
ta) 
iv) 

and 
(0 

cycle 
either 3' contains a boundary cycle of • or, for some 8, 3,8 is a boundary 
of • and 

(H / ~ E ~ '  ~ ;  ~'~ 5.13'-ie~ + 4e, . 
j = l  

Since 4~1 is a subpath of a,/3 is also a subpath of a. In this case part (i) of 
Theorem 3 is proved. 

Assume now that 4~, E ('1~,-~1 ~h(Y~'2] 5.1?"-Jej + 4eh). By Lemma 7(d), (f) and 
Lemma 26(b), there exists a boundary cycle cr1~2 of q~ such that 

3 °. ~a(~2), if non-trivial, is a subpath of pr(4~, q~) (of pr(4~2; q~)). 
4 °. If 4~2 is trivial then 0"2 is trivial. 
In view of 2 °, it follows from Corollary 1 to Theorem 4 and 4 ° of Theo'  m 4 

that 

(1) tr2 E/Yt° (~ ;  i~  3"13"-Je~). 

Then,  because of (So), tr~ ~ ~ ( ~ ;  IgT?~ 13"-Jej). Therefore,  applying Theorem 7 
with i, p., 1" replaced by n - 1, ~bl, o~, we conclude that there are two simple paths 

Fig. 126. Fig. 127. 
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~/, ~/ '~  B r ( n -  1), each connecting a vertex on trl to a vertex on 4~1, with the 

following properties: 

5 °. Let ~', be  the head of tr~ such that t0"l) = o(7/) and ~-~ the tail of tr~ such that 

o(z~) = o(~/'). Then ~-~, ~'~ ~ ~ ( ~ ;  E~2~ ½-13"-~e~). 

6 °. o'1 = r~0~'z for some subpath 0 of o'~. Furthermore, for some subpath/3 of 

61 or th~ -~ connecting t(,/) to t(r/'), 0 ~,,//3~/'-1 (see Fig. 127). By (1) and 5 °, 

) ( ) r2cr2~'lE~ ~ ;  4.13"-Jej+3e. C_~ ~ ;  ~'.5.13"-~e~+4e. . 
i~1 i=1 

Taking i := n - 1, 3~: = 0, 8 :=  ~'2tr2~'1, tr:= r/, ~':= r/' we see that part (i) of 

Theorem 3 is proved. 
(if) Let s, 0 _-< s < n, be the minimal integer for which there exist a region ate') 

in M (') and a p.o. boundary cycle ~b,~2 of xt~') such that 

7 °. ~bl is a subpath of a. 

8 °. Either ~b~ E xItt')(4e~) or ~b2 E q~')(2e~ + e2) in ~( ') .  

The existence of this s follows from the fact, verified in the proof of part (i) of 

Theorem 3, that there exist a region ~tn-~) in M (n-~) and a boundary cycle 4~,~b2 of 

• ~'-') satisfying conditions 1 ° and 2 °. 

If ~2 E q~J)(2e, + ez) in .4/t') then, by 5.1, ~b2 E q'~')(2el + e,) in ~ t ' )  for some 

t > 1. By Corollary 1 to Theorem 4 and 4 ° of Theorem 4, we obtain 
9 °. If ~2E qtt')(4e~) in d~ ('), hence in ~( ') ,  then 

) pr(~02; ~ )  ~ ~ ~ ;  4-13"÷~-Jej ; 
i=1 

if 02 E ~I~')(2e~ + e,) in .~'~, then 

pr(O~;*)~ ~(*; ~. 3"13"÷'-~e, + 2e,÷, +e,÷,) . 

Let ~-~ be the maximal head of ~b, such that ¢rl is a head of RT(o(~b~); ~) .  Then 

~b~ = ~r~ ~b0 for some ~bo and let ¢r2 be the maximal tail of ~b0 such that ~-~ is a head 

of LT(t(~bl);~). Then, for some boundary path tk of xI~'), 

(see Fig. 128). 

Since o(~,) = t(~b2) and t(~b~) = o(~b2), by Definitions 19, 27 and 32, pr(~b:; ~ )  = 

pr('B'2~2'/'/'l; ~tt). By 9 ° and (So), p r ( ~ ;  ~ )  cannot contain a boundary cycle of ~ ;  

therefore, in view of Lemma 7(f) and Lemma 26(b): 

10 °. ~b is non-trivial. 
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w, 

Fig. 128. 

We now show by induction on i that tO is on the boundary of q~s-o, 

i = 0, 1 , . . . ,  s. If i = 0, there is nothing to prove. Let i > 0, i < s. By the induction 

hypothesis, tO is on the boundary of ~( ' - '+ ' .  

11 °. Let II (s-° be a region in C,(s_,,(q~'-o) and or a subpath of tO which is a 

boundary path of II ('-°. If II(~-°# q~-o ,  then or#/3(H(~-°). 

Indeed, denote al := a( I I"-°) ,  /31 :=/3(II(~-°), % := y(II('-;)), 61 := ~$(H(*-°). 

Then, by Lemma 6 and Definition 26, 61a~ly?l[31 is a boundary cycle 

of II " -°  (see Fig. 129). If d~,. ,,(II('-°,xI~'-°) = 1 then, by Lemma 22(b), 

&a 7'y7 ~ ~ II('-°(2e~ + e2) in .~/(.-o. If d~,-,,(II ~'-°, q#.-o) > 1 then, by Corollary 

2 to Theorem 4 and Lemma 22(c), 61aT~y~ -1E II('-°(4el) in j / , - o .  Therefore, if 

or =/31 then II ('-° and /316~aTJy~ -~ satisfy conditions 7 °, 8 ° with xF, s, tO~, tO2 

replaced by II, s - i , [ 3 , & a ? l y 7  ~, contradicting the minimality of s. Thus, 

or#/3(II( '-°),  as required. 

We now apply Proposition 1 with M, cI), g replaced by M "-°,  xI ~'-°, tO. This 

gives a factorization tO = tO'tO"tO" and, if tO" is non-trivial, a further factorization 

tO"= VlV2"'" vh such that 

12 °. tO' is a head of RT(o(tO); W). 
13 o. tO,,-i is a head of LT(t(tO);W). 

14 °. If tO" is non-trivial, then tO" is on the boundary of (xI~'-°)a; if vj is 

not on the boundary of W "-°  for some j, then vj = /3( I ]  "-°) for some 

By the construction of ¢r~, ¢rltO' is a head of RT(o(tO~); xIr). Therefore, by the 

maximality of 7r~, it follows that tO' is trivial. Similarly, tO" is trivial, and hence 

tO=tO". 
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j 

Fig. 129. Fig. 130. 

Comparing 10 °, 11 ° and 14 °, we conclude that @ is on the boundary of ~b t'-°. 

This completes the induction argument. Thus, ~b is on the boundary of ~ .  

Let ~" be a boundary path of • such that qrr is a boundary cycle of • (see Fig. 

130). Since zrl is a head of RT(t(O2); ~ )  and t(1rl) belongs to the boundary of ~ ,  

we obtain m = RT(t(~b2);~). Similarly, zr~ 1= LT(o(~2);',F). Then, by Lemma 

15(0 and Lemma 26(a), ~- = pr(~2; xIt). 

We have thus determined a region • and a boundary cycle ~b~" of • such that 

is a subpath of a and, by 9 °, ~" = pr(tk2; ~ )  belongs either to ~ ( ~ ;  Y.~_-+~ 4.1Y*~-Je~) 

or to ~ ( ~ ;  E~=~ 3.13"+~-Sej + 2e,.1 + e,÷,). Take k: = rank(~). Then s < k because 

• "~ is a region in M t'~. Hence either ~'E~(~;V'.~.14"13k-Jej) or I"E 

~(qt ;  E~_S~ 3.13k-Jej + 2ek + e~+,) if s + t > k, as required. This completes the 

proof of part (ii). 
(iii) We prove by induction on n - i that c a r d ( ~ )  is effectively bounded in 

terms of the length l al of the boundary cycle a of M and the maximum l0 of 

lengths of boundary cycles of regions of M. 

Let n - i = 0. Consider the map M t"- ' .  As we have shown, each inner region 

of M t~-n has at least 9 neighbouring regions. Therefore, by the "area theorem" 

([1], p. 260), card(Reg(M~"-n))= card(if~ "-n) = card(if ,)  is effectively bounded 

in terms of l a[. 
Let n - i > 0. Consider the ordered 2-ranked map 

.~to-~ = ( M O - n ,  { i f~ , -n ,  ifl~+-n U " " U i f ~ - n } ,  < ). 

By the induction hypothesis, card(if~q ~ U . . .  U ff~-n) is effectively bounded in 

terms of l a[ and lo. Define 

q/ := {qb0-n [ @0-,~ U ff~,-l~, ind(@0-n) =< 2e~ + 2e~ in j/o-n}. 

By Proposition 3, card(if~H~\q/) is effectively bounded in terms of [al and 

card(~'~+-~ n U . . .  U if~-~)). Therefore, it is enough to prove the following: 

(3) card(~)--- 2/0card(if~+q" U . . .  U i f~- ' ) .  
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Consider a region ~ " - "  E q£. By Definitions 29 and 31, there exists a positively 

oriented boundary cycle/.~v of ~ti-l~ such that: 

15 °. v E ¢}°-'(2el + e2) in ~ " - ' .  
16 °. # is on the common boundary of ~ o - ,  and some region xI ~i-') E ~,~+1°r°-1) U 

• " U ~r~ ÷'. 

Furthermore, we have 

17 °. pr(p. ;q)) li~ ~(q);  E~=~ lY-Jej). 

Indeed, by Lemma 7(d), (f) and Lemma 26(b), there exists a boundary cycle 

o'1o"2 of q) such that al  is a subpath of pr(p.; q)) and ¢r2 is a subpath of pr(v; ~). By 

15 ° and 5.1, v E ~ ' - ' ) (2el  + e,) in A/c'-') for some t > 1; then by Corollary 1 to 

Theorem 4, 

( '  ) ~ 2 E ~  q); ~'~ 3-1Y-Sej +2e, +e,+,-1 . 
i=1 

If pr(~;  ~ )  E ~(q);  Y~}2-~ lY-Sej) then also or1E ~(q~; 21-I lY-Je./) and then 

('-' ) 
1 7 1 ~ 2 ~  ~ I~;  E 4"lY-Je./+2e~ + e,+~-i , 

./=1 

contradicting (S 0. Thus, pr(/.~ ; ~)  ff  ~ ( ~ ;  N~-~ 13'-~eJ) • 

We apply now Theorem 4, with i, to', ~', o;' replaced by i -  1, o(pr(~;q~)), 

pr(~;q~), t(pr(/.L;~)). Since pr(~;q~)ff/~ '(q);N-~ lY-~e./) and rank(q~) = i < 

rank(~),  we obtain by (A(~)), (A(~/)) that there exists a vertex t(~) of ~ which is 

a common vertex of bd(',I~) and bdeI~'-l~). 
We assign to any region ~ ° - l ) E  0// a triple ( ~ , - 1 ) ~ ,  v) where 

OF{~ - ~) .o']-(~-1). (~) ~ ' - ' ~ . , , + 1  u . . .  u ~ .  , 
(13)/.~ is a non-trivial path on the common boundary of ~ ' - "  and q~,-t~; 

(~/) v is a vertex of # and v ~ bd(XI ') f'l bd(XI~H)). 

Let ~1'-" and @~'-" be two distinct regions in o~ and let (xI~'-', ~1, vl), 

(xI'~2 ' - ' ,  ~2, v2) be the corresponding triples. If q'~'-~ = xI~ H), then there are only 

the following possibilities for v, and v2 to coincide: 

t(g,m) ---- th = V2 ---- O(p.2), O(p,l) = th = ~2 = t(p,2) 

for /z~ and #2 have no (non-oriented) edges in common. 

Let ~ ~+1 U" "- U gr. and let co be  a boundary cycle of ~ .  Since the number 

of distinct vertices v appearing in triples of the type (xI~'-',/~, v) with the same 

~),(i-1) cannot exceed [~o[, there are at most 2[ ~o[ such triples. We have [~o[_- < i0 

and therefore the total number of triples eI '~- ' ,  g, v) cannot exceed 

2/ocard(~+l U - - .  U ft ,) .  
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In view of (13), to distinct regions ~1, O2 E ~/ are assigned distinct triples and 

therefore 

card(a//) < 2/0card(~.~ O . . .  O ft,).  

Since c a r d ( ~ )  = card(~r~ i-~) for j _-> i, (3) is proved. This completes the induc- 

tion. The number of regions of M is thus effectively bounded in terms of l0 and 

I~tl. This proves part (iii). 

The theorem is proved. 
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